摘要:在偏远的北极社区,由于无法接入大规模电网,因此实施孤岛微电网是向当地居民提供和分配电力服务的最可行方式。从历史上看,这些孤岛电网主要依靠柴油发电机或水力资源来提供基本负荷。然而,这种做法可能会导致费用增加,因为燃料运输成本高昂,而且在冬季无法运输燃料时需要大量的现场储存。为了缓解这一问题,北极微电网已开始过渡到混合源运行模式,通过结合本质上可变的可再生能源,如风能或太阳能。由于这些混合源孤岛微电网的行为高度随机,它们可能会带来与电能质量相关的潜在问题,因为净负荷波动很快,柴油发电机无法快速响应。此外,非稳定随机源可能需要大量闲置柴油发电机资源作为旋转备用,这既低效又浪费。这项研究研究了现实世界中混合柴油微电网在风力发电损失时可能出现的瞬态动力学问题。此外,这项研究提出了从柴油旋转备用到电池储能系统 (BESS) 运行备用方案的过渡。对所提出的过渡的研究对于确定瞬态动力学的基本含义以及将 BESS 集成为旋转备用在稳定性、频率最低点和瞬态电压偏差方面的潜在好处非常重要。研究和验证瞬态动力学的方法依赖于 GFMI 的电磁仿真模型和实验功率硬件在环设置中的商用 GFMI。仿真结果表明,当微电网遭遇风力发电损失时,所提出的运行备用方案可改善系统的电能质量,包括电压偏差和频率最低点。根据模拟情况,添加 GFMI 可将频率最低点降低 65.3% 至 86.7%。此外,电压偏差的降低幅度在 3.6% 至 23.0% 之间。从这些结果可以得出结论,集成 GFMI 可以降低混合柴油微电网中的频率最低点,进而减少柴油消耗,从而提高系统可靠性并降低燃料费用。此外,这项工作的新颖之处在于,离线模拟结果是使用功率硬件在环平台验证的,该平台包含 100 kVA 商用 GFMI 作为受试设备。