a 纽约州石溪大学生物医学工程系,石溪,纽约州 11794;b 纽约州石溪大学劳弗物理与定量生物学中心,石溪,纽约州 11794;c 纽约州石溪大学物理与天文学系,石溪,纽约州 11794;d 马萨诸塞州总医院和哈佛医学院 Athinoula A. Martinos 生物医学成像中心,马萨诸塞州查尔斯顿 02129;e 纽约州石溪大学计算机科学系,石溪,纽约州 11794;f 纽约州石溪大学应用数学与统计学系,石溪,纽约州 11794;g 美国国立卫生研究院/国家酒精滥用与酒精中毒研究所代谢控制实验室,马里兰州罗克维尔 20852;h 牛津大学生理学、解剖学与遗传学系,牛津 OX1 3PT,英国
1 哈佛大学分子与细胞生物学系,52 Oxford St.,剑桥,MA 02138,美国 2 高能物理部,史密森天体物理观测台,哈佛与史密森天体物理中心,60 Garden St,剑桥,MA 02138,美国 3 LRL-CAT,礼来公司,先进光子源,阿贡国家实验室,9700 S. Cass Avenue,莱蒙特,伊利诺伊州,60439,美国 4 钻石光源,哈威尔科学与创新园区,迪德科特,OX11 0DE,英国 5 哈佛大学纳米系统中心,11 Oxford St,LISE G40,剑桥,MA 02138,美国 6 蒙大拿州立大学地球科学系,226 Traphagen Hall,PO Box 173480,博兹曼,MT 59717,美国 7 PLEX 公司,275 Martine St.,美国马萨诸塞州福尔里弗 02723 100 室 通讯作者:Julie EM McGeoch;电子邮件:Julie.mcgeoch@cfa.harvard.edu
Ishii Hirohisa * 1 Kuramoto Hirohisa * 2 Koh Ishii Hirohisa Kuramoto Tauchi Takushi * 2 Yamamoto Yusuke * 3 Hiroyuki Tauchi Yusuke Yamamoto Wakana Tomohiro * 3 Yoshimura Jin * 3 Tomohiro Wakana Hitoshi Yoshimura
9. Xu, Z.; Li, H.*; Liu, Y.; Wang, K.; Wang, H.; Ge, M.; Xie, J.; Li, J.; Wen, Z.; Pan, H.; Qu, S.; Liu,
摘要 颗石藻是现代海洋中最丰富的钙化生物,是许多海洋生态系统中重要的初级生产者。它们产生碳酸钙板(颗石藻)细胞覆盖层的能力在海洋生物地球化学和全球碳循环中发挥着重要作用。颗石藻还通过产生影响气候的气体二甲基硫醚在硫循环中发挥着重要作用。颗石藻研究的主要模式生物是 Emiliania huxleyi,现名为 Gephyrocapsa huxleyi。G. huxleyi 分布广泛,占据全球沿海和海洋环境,是现代海洋中最丰富的颗石藻。对 G. huxleyi 的研究已经确定了颗石藻生物学的许多方面,从细胞生物学到生态相互作用。从这个角度来看,我们总结了使用 G. huxleyi 取得的关键进展,并研究了这种模式生物的新兴研究工具。我们讨论了研究界需要采取的关键步骤,以推动 G. huxleyi 作为模式生物的发展,以及其他物种作为颗石藻生物学特定方面模型的适用性。
产能提升,成为产能高度成熟的工厂,提供客户更大批量的产品供应。同时,强茂集团海内外厂区持续优化生产流程,降低成本,提升交期速度及弹性,确保产品品质及交期效率。为提升销售竞争力,于东南亚设立新产线,提供更多元化产品,满足国际客户需求,增加客户订单。在汽车领域,公司聚焦新产品,瞄准全球前100大汽车客户及资本市场主要汽车电子客户群。强茂集团将因应发展趋势,设计
□ 请勿用于除用作纸架之外的任何其他用途。这可能会导致产品掉落或损坏。 □ 使用前请放置在水平表面上。如果放置在不平坦的表面或斜坡上,它可能会翻倒。 □ 请小心不要让本产品翻倒。存在损坏地板、墙壁、家具等的风险。 □ 请勿攀爬或悬挂在本产品上。否则,可能会造成损坏。 □ 请勿对本产品施加超过10kgf的负载。否则,可能会造成损坏。 □ 请勿将本产品靠近火源。表面会变形、变色。
近年来,人们通过巧妙的路线/方法合成了分子内富勒烯,即将几种低质量分子(如 H2、HD、HF、H2O、CH4)封装在富勒烯笼内,这些方法涉及复杂的化学和物理过程,如被称为分子手术的多步有机合成程序。[1–7] 人们随后利用各种光谱技术对这种轻分子内富勒烯进行了研究,例如红外/远红外 (IR/FIR)、非弹性中子散射 (INS)、核磁共振 (NMR)、X 射线衍射,发现它们表现出独特和非常规的性质,因为捕获分子动力学具有高度量子性,特别是在低温实验条件下的证据。[3,8–16] 此外,其中一些物质也因潜在的长期应用而受到关注
免疫疗法已被证明是与转移性黑色素瘤作斗争的患者的福音,显着改善了其临床结合和整体生活质量。在动物模型和人类患者中都建立了肠道微生物组组成与免疫疗法的效率之间的引人注目的联系。然而,肠道微生物影响治疗结果的精确生物学机制知之甚少。使用来自黑色素瘤患者的680个粪便元基因组的鲁棒数据集,构建了元基因组组装基因组(MAGS)的详细目录,以探索肠道微生物组的组成和功能特性。我们的研究发现了明显的发现,从而加深了肠道微生物与黑色素瘤免疫疗法的效率之间的复杂关系。,我们发现了具有良好治疗结果的患者的特定元基因组学,其特征是MAGS的普遍存在具有总体代谢潜力和多糖利用率的促值,以及负责钴胺素和氨基酸产生的那些。此外,我们对以其免疫调节作用而闻名的短链脂肪酸的生物合成途径的研究表明,这些途径在特定的MAG中具有差异的丰富性。除其他外,依赖钴胺素的木材 - 乙酸合成的Ljungdahl途径与对黑色素瘤免疫疗法的反应直接相关。
1.引言在摩尔定律的驱动下,半个多世纪以来半导体产业一直致力于缩小特征尺寸。最近,13.5 纳米极紫外光刻 (EUVL) 技术已经应用于 5 纳米节点 HVM。由于目前 0.33 NA 的限制,EUVL 无法分辨小于 13 纳米线/线距的特征。与 EUVL 相比,定向自组装 (DSA) 表现出高达 5 纳米 L/S 的极精细分辨率,被视为亚 10 纳米甚至亚 5 纳米特征尺寸的潜在图案化技术[1-9]。最近,含金属 EUV 光刻胶已被开发用于提高超薄 EUV 光刻胶膜的抗蚀刻性[10,11]。最近,我们的研究小组报道了一系列具有氟化嵌段的 BCP,经过中等温度下 1 分钟的热退火后迅速形成亚 5 纳米域[12,13]。我们假设氟化侧链对超精细分辨率和图案化速度起着关键作用。然而,由于薄膜超薄,抗蚀刻性是 5 纳米以下 DSA 材料的主要问题。