摘要近年来,多室模型被广泛用于尝试从扩散磁共振成像 (dMRI) 数据中表征脑组织微观结构。这种方法的主要缺点之一是需要先验决定微观结构特征的数量,并将其嵌入模型定义中。然而,在给定采集方案的情况下可以从 dMRI 数据中获得的微观结构特征数量仍然不清楚。在这项工作中,我们旨在使用自动编码器神经网络结合旋转不变特征来表征脑组织。通过改变自动编码器潜在空间中的神经元数量,我们可以有效地控制从数据中获得的微观结构特征的数量。通过将自动编码器重建误差绘制到特征数量,我们能够找到数据保真度和微观结构特征数量之间的最佳权衡。我们的结果显示了该数字如何受到壳层数量和用于采样 dMRI 信号的 b 值的影响。我们还展示了我们的技术如何为更丰富地表征体内脑组织微观结构铺平道路。
图 E 1 用于预测 MEG 活动的深度循环编码器 (DRE) 模型的表示。被掩蔽的 MEG pt ⊙ xt 从底部进入网络,连同控制表示 ut 和主题嵌入 s 。编码器使用卷积和 ReLU 非线性转换输入。然后,LSTM 对隐藏状态序列 ht 进行建模,并将其转换回 MEG 活动估计 ˆ xt 。Conv 1 d ( C in , C out , K, S ) 表示随时间进行的卷积,其中输入通道为 C in,输出通道为 C out,内核大小为 K,步幅为 S。类似地,ConvTransposed 1 d ( C in , C out , K, S ) 表示随时间进行的转置卷积。
最近的工作表明,稀疏的自动编码器(SAE)能够有效地发现语言模型中的人解释功能,从玩具模型到最先进的大语言模型等等。这项工作探讨了SAE的使用是否可以推广到机器学习的其他品种,特定的,加固学习,以及如何(如果有的话)将SAES适应这一实质上不同的任务所需的修改。本研究使用玩具加强学习环境来进行经验实验,研究了SAE代表强化学习模型作为可解释特征的能力的定性和定量度量。发现SAE成功地将深Q网络的内部激活分解为可解释的特征,此外,这些人解释的某些特征代表了对仅凭深度Q网络单独输出而无法发现的基本任务的内部理解。
过去几年,谷歌人工智能部门一直在开发和研究一款名为 Sycamore 的量子计算机。为了进行量子计算,它使用多个硬件量子位创建单个逻辑量子位,这些量子位用于运行程序,同时执行错误校正。在这项新工作中,该团队开发了一种查找和纠正此类错误的新方法,并将其命名为 AlphaQubit
在Domino,我们了解产品编码和标记不仅仅包括打印机,这就是为什么我们与客户合作开发适合其生产要求的端到端解决方案的原因。我们要照顾整个过程,包括整个编码系统一生中的测试,培训,安装和支持。为了满足现代制造环境的需求,我们的编码解决方案可以包括完整代码和检查解决方案所需的一切:编码自动化,视觉控制以及远程监视和诊断,有助于确保仅编码完美的产品进入供应链。
摘要 - 随着多模式融合技术的快速发展,病理图像与基因组学数据的整合已在癌症生存预测中取得了令人鼓舞的结果。但是,大多数现有的多模型模型不是通过结合病理学和基因组学模态来预训练的,而忽略了不同模态之间固有的任务无关联的关联。尽管某些自我监督的方法通过预训练的目标(例如相关性和均方误差)来对齐多模式信息,但它们缺乏深入的多模式相互作用。为了解决这些问题,我们提出了Contramae,这是一种对比度对齐的掩盖自动编码器框架,以融合病理学图像和基因组学数据,以进行癌症存活预测。具体而言,我们引入了一个对比目标,以使多形态保持一致并构建其内在的一致性。此外,我们设计了两个重建目标,以通过互补偿双方所缺乏的信息来捕获多模式之间的复杂关系。在生存预测中,将Contramae编码器的病理和基因组学编码串联为产生生存风险评分的最终表示。实验结果表明,在五个癌症基因组图集(TCGA)中,CONTORAMA的表现优于五个癌症数据集的现有最新方法。该代码可从https://github.com/suixuewang/contramae获得。
1 香港大学计算机科学系 QICI 量子信息与计算计划,香港薄扶林道。2 香港大学计算机科学系人工智能技术实验室,香港薄扶林道。3 北京大学前沿计算研究中心。4 北京大学计算机学院。5 麻省理工学院理论物理中心。6 牛津大学计算机科学系,英国牛津帕克斯路 OX1 3QD。7 圆周理论物理研究所,加拿大安大略省滑铁卢 N2L 2Y5 Caroline Street North 31 号。8 香港大学深圳科研创新研究院,中国深圳市南山区月星二路。9 浙江大学计算机科学与技术学院,中国。
数字技术正成为我们日常生活中日益重要的一部分。这对环境产生了重大影响,这是由设备数量不断增加(数据中心、网络设备、用户终端)造成的。尤其是视频流,它占了互联网总流量的 75% 以上 [1],因此造成了很大一部分影响。因此,减小通过互联网交换的视频的大小可以减轻数字技术带来的一些不便。MPEG 和 ITU 等标准化组织已经发布了多项视频编码标准(2003 年的 AVC [2]、2013 年的 HEVC [3] 和 2020 年的 VVC [4]),在保持可接受的视觉质量的同时减小了视频的大小。最近,压缩社区正在研究基于神经的编码器。在短短几年内,它们的图像编码性能已达到与 VVC [5] 相当的水平。然而,由于额外的时间维度,视频编码对于神经编码器来说仍然是一项具有挑战性的任务。
swath(1.4 km)。此外,凭借其太阳同步轨道,Cloudsat在同一当地时间经过赤道,将观察结果限制为在一天中的特定时间内“快照”。相比之下,成像仪器在更广泛的视野和更高的时间分辨率上进行测量,但它们仅提供“自上而下”的视角,并且不会直接测量大气曲线。但是,将不同光谱通道中的图像与大气轮廓重叠的测量结合在一起,可以推断雷达轨道以外的垂直轮廓。Barker等。[3,4]通过强度像素匹配,开发了一种将地球保健曲线扩展到3D的算法。最近的工作[5,6,7]使用了基于ML的方法(例如U-NET,CGAN,线性回归,随机森林,XGBoost),以从“自上而下”的测量中估算垂直云信息。特别是Brüning等人。[5]从MeteoSat第二代(MSG)旋转增强的可见和红外成像仪(Seviri)的卫星图像进行了训练,并具有Cloudsat Cloud Cloud Radar(CPR)反射率,重建3D云结构。对于所有方法,模型训练需要数据源之间的精确空间和时间对齐。由于雷达卫星的立交桥有限(图1b),轮廓测量值少于可用的图像(为了进行比较,MSG/Seviri每年产生40 TB的图像数据,而CPR每年产生150 GB)。然后,我们使用匹配的图像profile对进行了3D云重建任务的预训练模型。自我监督学习(SSL)的最新进展(SSL)在大型未标记数据集的训练前模型中表现出了希望,但它们在云研究中的应用仍然不足。在这项工作中,我们将SSL方法(MAE,MAE,[8])和GeoSpatemance Authewawe AutoCododers(基于Satmae,[9])应用于2010年的多光谱MSG/SEVIRI数据。我们的结果表明,预训练始终提高此任务的性能,尤其是在热带对流带等复杂地区。具有地理空间意识的预训练模型(即时间和坐标编码),尤其是胜过随机初始化的网络和更简单的U-NET体系结构,从而改善了重建结果。该代码将在接受后提供。
如图 1 所示,感知脑解码 (PBD) 是一种利用不同刺激引起的大脑反应来辨别原始感知刺激(例如视觉或听觉线索)或其某些特征的方法。通常,PBD 在认知和临床两个方面都具有优势。通过 PBD,可以仔细研究与外部刺激相对应的不同大脑活动模式。在临床环境中,大脑解码技术可以用于与患有闭锁综合症或瘫痪等疾病(这些疾病可能会损害运动和发声功能)的个体进行交流。在这种情况下,可以尝试在提供感知刺激的同时重建个体的反应或想象。此外,改进的感知脑解码方法可以用于记忆检索或可视化思维等应用,从而有助于认知研究和康复工作。