摘要:生物打印是一种新型再生医学领域,其中组织或器官的体内生物制造由两种需求驱动,一是器官移植,二是精确的组织模型。生物打印于 1988 年首次由 Klebe 展示。他使用标准惠普 (HP) 喷墨打印机通过细胞刻蚀技术沉积细胞。创建模拟身体组织的载细胞 3D 结构的能力不仅在组织工程中,而且在药物输送和癌症研究中也适用。对于组织工程支架的制造,生物打印可以提供患者特定的空间几何形状、受控微结构和各种细胞类型的定位。在过去的几十年里,三维生物打印被广泛应用于构建许多组织/器官,如皮肤、血管、心脏等,这不仅为器官替代的宏伟目标奠定了基础,还可以用作药代动力学、药物筛选等的体外模型。由于传统技术无法制造具有所需结构、机械和生物复杂性的构造,因此对开发组织和器官的替代制造方法的需求日益增加。3D生物打印是一种增材制造技术,它使用“生物墨水”逐层构建设备和支架。由于器官非常复杂,因此许多生物打印方法被用于克服各种应用的挑战。基于喷嘴的技术,如喷墨和挤压打印,以及基于激光的技术,如立体光刻和激光辅助生物打印,可以提高细胞活力、分辨率和打印保真度。本文定义了不同的制造技术,即基于激光、基于挤压、立体光刻和基于喷墨的生物打印。讨论了每种技术的优势、针对不同组织类型的当前研究现状、挑战和前景。
摘要:随着多电/全电飞机的发展,特别是混合电推进或电力推进飞机的进步,在电力需求不断增长、散热能力受限的情况下,必须解决飞机能量系统设计和运行优化的问题。本文概述了飞机电源系统架构优化和能量管理系统的研究现状。本文从多能源形式的角度回顾了飞机电源系统架构优化的基本设计方法。可再生能源如光伏电池和燃料电池被融入机载电源系统,由于其不确定性和功率响应速度,也使得飞机能量优化分配问题变得复杂。本文分析并介绍了飞机电源系统优化、评估技术和动态管理控制方法的基本思想和研究进展。总结了飞机能源系统架构工程设计优化方法的发展趋势,并从重量、可靠性、安全性、效率、可再生能源特性等约束条件下的多目标优化中得出。根据飞机的不同功率流关系,对基于能源效率和电能质量的成本函数进行了评论和讨论。本文将不同飞机微电网架构的动态控制策略与其他方法进行了比较。回顾了一些电力推进飞机和多电飞机的综合能源管理优化策略或方法。分析了飞机能量优化技术的数学考虑和表达,并比较了一些特点和解决方法。结合一些参考文献,讨论了热能和电能耦合关系研究领域以及飞机电力系统的电能质量和稳定性。最后,本文还对未来机场微电网与电力推进飞机动力系统的能量交互优化问题进行了探讨和预测。本文基于EMS和架构优化的最新技术发展,提出业界对飞机动力系统电气化的常识和未来趋势,并提出在电气化飞机推进系统架构选择中应遵循的EMS+TMS+PHM
摘要:随着多电/全电飞机的发展,特别是混合电推进或电力推进飞机的进步,在电力需求不断增加、散热能力受限的情况下,必须解决飞机能量系统设计和运行优化的问题。本文概述了飞机动力系统架构优化和能量管理系统的研究现状。本文从多能源形式的角度回顾了飞机动力系统架构优化的基本设计方法。可再生能源如光伏电池和燃料电池被融入机载动力系统中,由于其不确定性和功率响应速度,也使得飞机能量优化分配问题变得复杂。本文分析并介绍了飞机动力系统优化、评估技术和动态管理控制方法的基本思想和研究进展。总结了飞机能源系统架构工程设计优化方法的发展趋势,并从重量、可靠性、安全性、效率、可再生能源特性等约束条件下的多目标优化中得出。根据飞机的不同功率流关系,对基于能源效率和电能质量的成本函数进行了评论和讨论。本文将不同飞机微电网架构的动态控制策略与其他方法进行了比较。回顾了一些电力推进飞机和多电飞机的综合能源管理优化策略或方法。分析了飞机能量优化技术的数学考虑和表达,并比较了一些特点和解决方法。结合一些参考文献,讨论了热能和电能耦合关系研究领域以及飞机电力系统的电能质量和稳定性。最后,本文还对未来机场微电网与电力推进飞机动力系统的能量交互优化问题进行了探讨和预测。本文基于EMS和架构优化的最新技术发展,提出业界对飞机动力系统电气化的常识和未来趋势,并提出在电气化飞机推进系统架构选择中应遵循的EMS+TMS+PHM
摘要 创伤性脑损伤 (TBI) 通常会导致中线移位 (MLS),这是头部损伤严重程度和预后的关键指标。在过去十年中,使用人工智能 (AI) 技术自动分析头部计算机断层扫描 (CT) 扫描中的 MLS 引起了广泛关注,并有望提高诊断效率和准确性。本综述旨在总结基于 AI 的 TBI 病例 MLS 分析方法的研究现状,确定所采用的方法,评估算法的性能,并得出关于其潜在临床适用性的结论。进行了全面的文献检索,确定了 15 篇不同的出版物。对已确定的文章进行了分析,重点关注使用 AI 技术进行 MLS 检测和量化,包括它们的 AI 算法选择、数据集特征和方法。所综述的文章涵盖了与 MLS 检测和量化相关的各个方面,采用在二维或三维 CT 成像数据集上训练的深度神经网络。数据集大小从 11 名患者的 CT 扫描到 25,000 张 CT 图像不等。AI 算法的性能在准确度、灵敏度和特异性方面表现出差异,灵敏度范围为 70% 到 100%,特异性范围为 73% 到 97.4%。利用深度神经网络的基于 AI 的方法已显示出在 TBI 病例中 MLS 的自动检测和量化方面的潜力。然而,不同的研究人员使用了不同的技术;因此,很难进行批判性比较。需要进一步研究和评估方案的标准化,以确定这些 AI 算法在临床实践中用于 MLS 检测和量化的可靠性和通用性。研究结果强调了 AI 技术在改善 MLS 诊断和指导 TBI 管理临床决策方面的重要性。
1 )交互性与安全性的矛盾问题。在当前智能座 舱所处的发展阶段,新型人车交互方式的安全性尚需 要进一步检验,繁复的人机交互会对驾驶人造成分神 影响甚至带来安全隐患;在未来智能座舱发展的第三 阶段,还将面临着人车交互的信任问题。解决该问题 是智能座舱实现实质性发展的关键。 2 )舱内交互与舱外交互的协同问题。智能座舱 作为移动生活智慧终端的“第三空间”,其交互范畴 需全面覆盖汽车舱内及舱外的立体化时空场景,不仅 需要解决舱内的人机交互问题,也要解决舱外的人机 交互问题,以及舱内舱外人机交互的协同问题。现有 研究已部分解答了该问题,但仍需结合真实应用场景 继续深入研究。 3 )智能座舱与其他智慧生活形态的连接问题。 汽车智能座舱是智慧城市的重要组成部分,其交互设 计不是孤立的,需有机对接到整个智慧城市的系统 中。目前,对该问题的研究关注还比较少,有较大的 研究空间。 4 )智能交互的应用实现问题。虽然智能交互的 部分关键技术已实现了突破,但离普遍应用还较远。 其根本原因在于交互技术的发展还不够充分,主要体 现在信息感知、信息传输、信息处理等三个方面,具 体为传感探测仪器的精度不足、高速物联通信基础设 施建设不足、芯片及软件产品的算力不足。这些问题 的解决将决定智能座舱交互设计的发展速度。 综合以上研究现状与问题分析,汽车智能座舱交 互设计的发展趋势总结如下: 1 )交互模态多元化、复合化。基于视觉、听觉、 触觉等多感官通道的立体融合式交互模态将成为主 流,结合更加深入的效率、安全、信任等人机交互研 究,将逐渐发展成为全面的智能交互体系。 2 )交互方式人性化、情感化。虽然交互模态日 益多元化,但座舱人机交互的方式将变得越来越简 单,汽车将自发迎合人的自然交互习惯,让驾驶员以 更少的注意力完成更多的人机交互,从而找到智能座 舱交互性与安全性的平衡点。同时座舱人机交互将更 注重对人的情感需求的感知与响应,成为情感化的智 能伙伴。 3 )交互设计场景化。智能座舱的交互设计将结 合更多的场景催生更丰富的交互方案,不仅从车内场 景扩展到车外场景,也会由单一场景扩展到复合场 景,甚至扩展到智慧生活的任意场景中,并实现交互 模式的订制化,使汽车智能座舱真正成为未来智慧生 活空间的一部分。 4 )交互相关技术日益成熟。在国家政策的持续 引导与驱动下,硬件技术、软件技术、物联通信基础 设施等都将迎来持续的建设、发展与完善,为智能座 舱交互设计的全面发展提供技术基础。
* 通讯作者,电子邮箱:wuz2015@mail.xjtu.edu.cn (Z. Wu)。摘要:解决传统能源危机和环境问题的迫切需要加速能源结构转型。然而,可再生能源的多变性对满足复杂的实际能源需求提出了挑战。为了解决这个问题,建设一个多功能的大型固定式储能系统被认为是一种有效的解决方案。本文批判性地研究了电池和氢混合储能系统。这两种技术都面临着阻碍它们完全满足未来储能需求的局限性,例如在有限的空间内实现大容量存储、快速响应的频繁存储以及无损耗的连续存储。电池具有快速响应(<1 s)和高效率(> 90%)的特点,在频繁的短时间储能方面表现出色。然而,自放电率(> 1%)和容量损失(~20%)等限制限制了它们在长时储能中的应用。氢能作为一种潜在的能源载体,能量密度高、状态稳定、损耗低,适合大规模、长时储能。然而,由于其储能效率低(~50%),不适合频繁储能。正在进行的研究表明,电池和氢混合储能系统可以结合两种技术的优势,满足日益增长的大规模、长时储能需求。为了评估它们的应用潜力,本文使用提出的关键性能指标对这两种储能技术的研究现状进行了详细的分析。此外,从多个角度概述了电池和氢混合储能系统面向应用的未来方向和挑战,为先进储能系统的发展提供指导。亮点:⚫回顾了电池和氢混合储能系统的面向应用的储能系统。⚫提出了一系列先进储能系统的关键性能指标。 ⚫ 在可再生能源存储情况下,电池和氢混合储能系统(0.626 美元/千瓦时)比电池储能系统(2.68 美元/千瓦时)更具成本竞争力。⚫ 总结了多功能大型固定式电池和氢混合储能系统的挑战。关键词:混合储能系统、电池、氢、固定式、大型、多功能。
大量研究致力于数字应用的自动个性化,尤其是互联网应用[8]。随着互联网服务内容的增长,个性化应用(如推荐系统)有助于缓解信息过载和决策疲劳[8]。这项工作范围从网页上相对简单的更改(例如,使用每个用户的姓名)到使用更深层次的用户需求和行为模型的复杂定制[28]。电脑游戏是一个相对较新的个性化领域。与信息搜索和电子商务等经典个性化领域相比,人们玩游戏的原因更为广泛(例如,挑战、探索、审美体验和社交活动)。因此,更难确定游戏应该适应的个体玩家的需求和偏好。此外,与其他数字应用(如网站)相比,电脑游戏通常涉及更复杂的内容和用户交互。典型的游戏玩法是多感官的(例如,视觉、听觉和触觉),并包含多层含义(例如,正式规则和故事)。因此,要个性化游戏,需要进一步的技术进步(如何程序化地调整更复杂的游戏内容)和新的设计原则(如何根据各种玩家需求进行个性化),而不是我们从经典的个性化领域学到的东西。因此,电脑游戏是研究下一阶段个性化技术的绝佳领域。在本文中,我们采用了 Bakkes、Tan 和 Pisan 的定义 [ 4 ],即个性化游戏是根据当前玩家的信息进行自我调整的游戏,例如通过自动确定适合当前玩家的难度级别。本文的主要论点是,现有的个性化游戏人工智能研究可以从更多以玩家为中心的视角中受益。尽管他们在技术上做出了贡献,但该领域的大多数现有工作主要面向更复杂的算法和系统功能。这种以系统为中心的个性化方法已经在个性化网络应用程序的早期研究中尝试过。它导致了试图“找到工具的用途,并部署最酷的新功能”的实践,并使这些应用程序对它们应该服务的人群不那么有用[ 28 ]。我们的目标是展示游戏人工智能研究的现状为了避免类似的缺点,游戏 AI 研究社区可以从进一步将技术研究与玩家需求和行为的深度模型结合起来中受益。在本文中,我们通过认知科学理论绘制了游戏 AI 在个性化方面的研究现状,介绍了我们为加强上述一致性而开展的初步工作。具体来说,我们使用 Norman 关于行动阶段的认知理论 [ 37 ] 来研究玩家经历的每个阶段的最新研究成果,并确定有待进一步研究的未解决的问题。
摘要 全世界有 8% 到 15% 的育龄夫妇患有不孕不育问题。据世界卫生组织估计,全球有 6000 万到 8000 万对不孕不育夫妇,某些地区不孕不育率最高。不孕不育给夫妇、家庭、当事人以及整个社会带来了巨大的社会、情感和心理压力。尽管人工智能技术在医学界的使用每年都在增长,但很少有研究将人工智能 (AI) 技术应用于生殖领域。为了帮助原因不明的不孕不育夫妇,本综述研究开发并评估了多种人工智能模型,这些模型可以根据各种特征区分不孕/可孕夫妇。 关键词-不孕不育、机器学习、人工智能、深度学习、图像处理、卷积神经网络 (CNN) 1. 引言 无保护性交 12 个月后仍未能受孕称为不孕不育。世界卫生组织 (WHO) 指出,不孕不育是一种导致功能障碍的疾病。全球有超过 1.86 亿对夫妇患有不孕不育症,事实上,他们中的大多数生活在贫困国家,无法获得足够的医疗服务。因此,不孕不育是世界上最普遍的健康问题之一。根据文献,各种研究都试图使用机器学习方法预测不孕不育的结果。从对这些评论的定性和定量分析中可以清楚地看出,人们使用各种分类器来预测不孕不育,但只有少量来自生育诊所的静态数据用于训练它们。通过在训练期间为分类器提供大量动态数据,可以提高不孕不育预测的准确性。然而,现在使用的方法使得创建这样的分类器具有挑战性。不孕不育的大数据分析可以实现这一点。机器学习 (ML) 预测分析技术为医护人员提供了更好的信息。这有助于个人做出更明智的选择,从而提高不孕不育治疗的成功率。为了找到潜在的扩展,无论是填补空白还是推进研究,这篇评论论文的目的是了解使用各种人工智能技术(可能包括各种机器学习方法)预测不孕症的研究现状。为此,我们回顾了几篇关于机器学习和不孕症的出版物。我们只选择使用机器学习预测不孕症的研究论文。然后对这些论文进行研究,以帮助未来的研究人员发现他们后续研究中必要的改进,并帮助他们更好地理解不孕症的机器学习。本文回顾了六篇关于基于人工智能的不孕不育预测的不同出版物。本文的结构如下:第 2 节概述人工智能,第 3 节描述所选模型、所用方法和每个模型的分析,第 4 节总结整个研究,第 5 节总结本文。
近十年来,卤化物钙钛矿得到了广泛的研究,部分原因是钙钛矿基太阳能电池的能量转换效率得到了前所未有的快速提高。除了太阳能电池之外,基于钙钛矿的光电器件如光电探测器和发光器件也已展示出令人印象深刻的性能,这得益于大的吸收系数、可调的带隙、缺陷容忍度和长的载流子扩散长度。尽管这些领域已经取得了重大进展,但是包括长期稳定性和铅的毒性在内的一些挑战极大地限制了它们的商业化。人们已经付出了巨大的努力,从光物理的基本理解、材料工程和性能优化等方面来解决这些长期存在的问题。本期特刊以“卤化物钙钛矿:从材料到光电器件”为主题,包括一条评论、四篇综述和五篇原创研究文章,涵盖了所有提到的主题。在本期特刊中,熊等人。来自新加坡南洋理工大学的李建军等 [1] 深入评述了基于钙钛矿的激子极化玻色-爱因斯坦凝聚态的研究现状和未来的研究方向。Koleilat 等 [2] 详细总结了维度工程包括形态工程和分子工程如何影响它们的带隙、结合能和载流子迁移率,从而影响光电探测器和太阳能电池的性能。李等 [3] 综述了二维钙钛矿中自陷激子的研究进程,包括自陷激子的起源,如何检测和控制自陷激子以及自陷激子的存在如何影响钙钛矿基光电器件的性能。唐等 [4] 详细评述了自陷激子在钙钛矿中的研究进展,包括自陷激子的起源,如何检测和控制自陷激子以及自陷激子的存在如何影响钙钛矿基光电器件的性能。 [4] 收集了钙钛矿基发光二极管的外量子效率、亮度和稳定性状态等性能矩阵,向读者简要而全面地介绍了该领域。陈等 [5] 总结了下一代硅基串联太阳能电池的可能顶部电池,并进一步提出了有希望的候选顶部电池。梅等 [6] 通过一种简单的一步滴涂法探索了前体浓度如何影响可印刷无空穴导体介观钙钛矿太阳能电池的性能;游等 [7] 通过使用无掺杂聚合物聚(3-己基噻吩-2,5-二基)(P3HT)作为空穴传输层,研究了无机钙钛矿太阳能电池的性能和热稳定性。钟等[8] 采用刮刀涂布法制备宽带隙甲脒溴化铅薄膜,并研究表面活性剂种类对基于所制备薄膜的太阳能电池性能的影响。魏等。[9] 展示了如何通过复合工程制造高效的钙钛矿基发光二极管。Mu 等人 [10] 提出了一种电晕调制装置结构,以在电子束激发下实现钙钛矿量子点中的随机激光发射。本期特刊中出现的十篇文章仅涵盖了这个快速发展的钙钛矿社区最新进展的一小部分。我们希望本期特刊能为卤化物钙钛矿社区提供有用的参考,并激发这些研究领域的更多研究。