战斗机已准备好应对美国空军大气预警系统 (AEWS) 在美国和加拿大上空探测到的空中威胁。AEWS 使用的雷达控制台包含电子元件,例如所示的电路板,这些元件越来越难以维修或更换。对于 AEWS 系统,SwRI 提供了电路卡组件 (CCA - 模拟和数字)、键盘、轨迹球、打印机和电源的外形、配合、功能 (FFF) 替代品。(战斗机照片由美国空军中士 Bennie J. Davis 提供。)
不再制定标准的机构。超过 750 条当前描述性评论已格式化,并带有主题标题,以方便访问特定信息。主要部分涵盖非政府、联邦政府、标准文件和信息来源、主题索引和相关列表,涵盖首字母缩略词和首字母缩写词、已解散的机构以及那些
纳粹德国物理技术研究院和德国联邦物理技术研究院成立 125 周年:这个周年纪念日是过去一年中最值得关注的事件。 125 年来,计量学、测量科学及其应用领域始终保持着最高精度、进步和可靠性,这是一个令人印象深刻的成功故事。今年 3 月,我们举行了一场令人难忘的庆祝活动,有 1000 多名嘉宾出席,其中 240 名来自国外。十月份,我们还为及时修复的“物理学珠宝盒”——“天文台”举行了揭幕仪式。该实验室于 1891 年首次投入使用,当时它可能是世界上最先进的物理实验室,建筑具有惊人的对称性和优雅性,同时提供了最强大的功能性,它是赫尔曼·冯·亥姆霍兹 (Hermann von Helmholtz) 的工作场所,他与维尔纳·冯·西门子共同创立了 PTR,并成为其第一任总裁。
纳粹德国物理技术研究院和德国联邦物理技术研究院成立 125 周年:这个周年纪念日是过去一年中最值得关注的事件。 125 年来,计量学、测量科学及其应用领域始终保持着最高精度、进步和可靠性,这是一个令人印象深刻的成功故事。今年 3 月,我们举行了一场令人难忘的庆祝活动,有 1000 多名嘉宾出席,其中 240 名来自国外。十月份,我们还为及时修复的“物理学珠宝盒”——“天文台”举行了揭幕仪式。该实验室于 1891 年首次投入使用,当时它可能是世界上最先进的物理实验室,建筑具有惊人的对称性和优雅性,同时提供了最强大的功能性,它是赫尔曼·冯·亥姆霍兹 (Hermann von Helmholtz) 的工作场所,他与维尔纳·冯·西门子共同创立了 PTR,并成为其第一任总裁。
纳粹德国物理技术研究院和德国联邦物理技术研究院成立 125 周年:这个周年纪念日是过去一年中最值得关注的事件。 125 年来,计量学、测量科学及其应用领域始终保持着最高精度、进步和可靠性,这是一个令人印象深刻的成功故事。今年 3 月,我们举行了一场令人难忘的庆祝活动,有 1000 多名嘉宾出席,其中 240 名来自国外。十月份,我们还为及时修复的“物理学珠宝盒”——“天文台”举行了揭幕仪式。该实验室于 1891 年首次投入使用,当时它可能是世界上最先进的物理实验室,建筑具有惊人的对称性和优雅性,同时提供了最强大的功能性,它是赫尔曼·冯·亥姆霍兹 (Hermann von Helmholtz) 的工作场所,他与维尔纳·冯·西门子共同创立了 PTR,并成为其第一任总裁。
纳粹德国物理技术研究院和德国联邦物理技术研究院成立 125 周年:这个周年纪念日是过去一年中最引人注目的事件。125 年来,计量学、测量科学及其应用领域始终保持着最高精度、进步和可靠性,这是一个令人印象深刻的成功故事。今年 3 月,我们举行了一场令人难忘的庆祝活动,有 1000 多位嘉宾出席,其中 240 人是来自国外,得到应有的承认。十月份,我们还为及时修复的“物理学珠宝盒”——“天文台”举行了揭幕仪式。1891 年首次投入使用时,它可能是世界上最先进的物理实验室,这座建筑具有惊人的对称性和优雅性,同时提供了最大的功能性,是 Hermann von亥姆霍兹与维尔纳·冯·西门子共同创立了 PTR,并担任其第一任总裁。
单元2:对流传热热通量,流体流的平均温度,总体传热系数,LMTD,个体传热系数,个体和整体传热系数之间的关系,通过对流和强制对流的传热概念,自然和强制对流的应用,对流的应用,对流,热交换,热交换,单个通行率,1-1-1-1-1-1-1-1-1-1-1-1-1-1次平行式交换1-1-1-1-1-1-2-2-2凝结。
生命是如何产生的?数千年来,人类一直在寻求这个问题的超自然答案。但在 20 世纪初,人们开始用科学术语来解决这个问题。路易斯·巴斯德驳斥了生命可以在任何特定时间自发产生的观点,查尔斯·达尔文提出了一个绝妙的理论来解释物种是如何通过自然选择逐渐进化的。有机物不再是生命的专属产物,而是可以通过非生物方式合成。生命的出现似乎只不过是我们宇宙物质历史中一个非常特殊的转变,它导致了或多或少复杂的分子系统出现新的特性。在 21 世纪初,生命起源研究是一个快速发展的领域,本质上是跨学科的,其优势在于结合了各种方法。第一种是“自下而上”的方法,主要由天体物理学、化学和地质学主导。通过研究物质的规律、原子和分子的合成及其相互作用以及化石记录中过去生命的痕迹,科学家试图确定生命开始所需的条件,无论是在地球还是其他地方。另一方面,生物学遵循“自上而下”的方法,从我们所知的“生命”回溯到生物体最后共同祖先中存在的最小分子和特性集。挑战在于在实验室中从这些最初的构建块重建生命。这些方法的融合有助于将前生命化学与第一个生命系统联系起来,从而最终解开我们起源的奥秘。
随着对光和物质波场的量子性质的研究取得最新进展,量子工程这一新领域应运而生。量子工程为量子计量学测试基本物理定律开辟了新视野,在空间和时间测量方面达到了前所未有的精度水平。相关的新型量子技术催生了原子钟和传感器,可在全球大地测量、惯性传感、导航和激光测距中得到广泛应用。德国联邦物理技术研究院 (PTB) 一直致力于开发超越最先进水平的精密测量技术。多年来,PTB 与汉诺威莱布尼茨大学 (LUH) 一直有着出色的合作伙伴,尤其是数学、物理和大地测量学院的研究所,以及马克斯普朗克引力物理研究所 (Albert Einstein Institute, AEI),这些研究所在量子工程和密切相关领域开展着顶级研究。此外,与汉诺威激光中心 (LZH) 和不来梅大学应用空间技术和微重力中心 (ZARM) 的密切合作已被证明是卓有成效的。这个强大的社区是最终导致建立 QUEST(量子工程和时空研究中心)的先决条件,该中心是汉诺威莱布尼茨大学的卓越中心。因此,QUEST 汇集了这些合作伙伴的杰出专业知识,以在汉诺威-布伦瑞克地区共享知识并提高该地区的实力。该集群的核心思想是将量子工程、量子传感器、时空和使能技术这四个主要研究领域联系起来,并建立有前景的研究活动,特别是在这些领域的交界处。因此,PTB、LUH、AEI、LZH 和 ZARM 之间的未来合作将通过各种 QUEST 措施得到系统加强,例如通过在 PTB 校园内建立联合教授职位和研究小组。在本出版物中,读者将获得 QUEST 合作伙伴的概述以及 PTB 正在进行和计划中的 QUEST 相关研究活动。我们希望 PTB 的新 QUEST 研究所能够不负众望,为量子工程和时空研究的科学技术做出领先贡献。我们希望您喜欢阅读本期内容。
制造计量中反复出现的一个问题是,生产费用一直面临着降低的压力。虽然人们希望寻找更准确、更快速的测量系统,这是可以理解的,但有时我们会忽视真正的优先事项。我们的目标应该是使用最便宜的方法来验证我们的制造流程是否符合要求。这意味着我们想要购买“最差”的设备。这样说可能听起来很奇怪,但事实是,如果低成本的坐标测量机足以满足要检查的公差,那么就没有必要购买精度更高的机器,即使它的成本要高得多。结果是,我们很可能在测量设备能力的极限下使用它,因此,了解这些极限在哪里非常重要。我认为,我们需要做更多的工作来开发评估坐标测量机真正特征特定测量不确定度的方法,这样我们才能确信我们的能力与要求正确匹配。我将通过我们当前生产流程中的例子来说明这一点,并研究一些我们仍需解决的具体测量问题。