Ab Ram Jyothis博士和Meenakshy Kr doi博士:https://doi.org/10.33545/26164485.2023.v7.i3.v7.i3.v7.i3g.943抽象的复发性呼吸道感染(RRTIS)在儿童中很常见,可能导致复杂性。大多数孩子每年都有三到六个RRTI的体验。尽管这些感染是自我限制的,但症状可能令人痛苦。许多治疗方法用于控制症状并缩短疾病持续时间。大多数人的收益最小,可能导致不利影响。用个性化同种疗法药物的宪法治疗在儿童期RRT中受益。 本研究旨在调查宪法治疗下儿童中碘化砷6倍治疗的补充。 有60名复发性呼吸道感染的儿童鉴定出诊断RRI的标准。 用一组(n = 30)和iodatum 6x的宪法医学以及宪法医学对另一组(n = 30)进行了一项开放标签比较研究。 本研究的结果表明,如果与同种疗法选择的宪法医学一起使用,则碘化砷6x的催化作用可预防儿童的RRI。 这项研究强调了碘化砷6X的使用,以增加对儿童呼吸道感染的免疫力。 关键词:循环呼吸道感染,宪法医学,碘化砷6倍,个性化同种疗法医学1。 引言复发性呼吸道感染(RRI)是小儿年龄组发病率和死亡率的最重要原因。用个性化同种疗法药物的宪法治疗在儿童期RRT中受益。本研究旨在调查宪法治疗下儿童中碘化砷6倍治疗的补充。有60名复发性呼吸道感染的儿童鉴定出诊断RRI的标准。用一组(n = 30)和iodatum 6x的宪法医学以及宪法医学对另一组(n = 30)进行了一项开放标签比较研究。本研究的结果表明,如果与同种疗法选择的宪法医学一起使用,则碘化砷6x的催化作用可预防儿童的RRI。这项研究强调了碘化砷6X的使用,以增加对儿童呼吸道感染的免疫力。关键词:循环呼吸道感染,宪法医学,碘化砷6倍,个性化同种疗法医学1。引言复发性呼吸道感染(RRI)是小儿年龄组发病率和死亡率的最重要原因。根据流行病学研究,据估计,在发展中国家,年龄<1岁的儿童中有25%,1-4岁的儿童中有18%,在6岁以下的儿童中,有RRI [1]。要诊断RRI至少存在以下诊断标准之一[2]。每年≥6种呼吸道感染,每月≥1个呼吸道感染涉及上呼吸道,每年≥3种呼吸道感染涉及下气道。从治疗和预防性的角度来看,患有RRI的孩子对儿科医生来说是一个巨大的挑战。医师的作用已从治疗疾病方面扩展,以维持更好的健康。对宪法药物的同种疗法治疗可有效地治疗和预防RRI [3,4]。药物砷6x,是由砷化碘化物制备的,通过用碳 - 二硫化物中的碘溶液处理砷[5]来合成。Clarke指出,砷含量可用于肺和支气管的慢性和复发性炎症状态,并带有大量的,绿色的黄色,类似脓液的期望和短呼吸[6]。Blackwood表明,在慢性卡塔哈尔条件下,艾森尼碘含量具有绿色的黄色脓样期望。在结核病和卡他的肺炎中也指出,夜汗,复发性发烧,消瘦,咳嗽和粘液性期望,呼吸困难,良好的张力和快速脉搏[7]。
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
毒理学概况是根据 1986 年《超级基金修正案和重新授权法案》(SARA)(公法 99-499)制定的,该法案修订了 1980 年《综合环境反应、补偿和责任法案》(CERCLA 或超级基金)。这项公法要求 ATSDR 为 CERCLA 国家优先清单上设施中最常见的危险物质准备毒理学概况,这些物质对人类健康构成了最大潜在威胁,由 ATSDR 和 EPA 确定。2005 年 12 月 7 日,《联邦公报》公布了修订后的 275 种危险物质优先清单(70 FR 72840)。有关物质清单的先前版本,请参阅联邦公报上下列公告:1987 年 4 月 17 日(52 FR 12866);1988 年 10 月 20 日(53 FR 41280);1989 年 10 月 26 日(54 FR 43619);1990 年 10 月 17 日(55 FR 42067);1991 年 10 月 17 日(56 FR 52166);1992 年 10 月 28 日(57 FR 48801);1994 年 2 月 28 日(59 FR 9486);1996 年 4 月 29 日(61 FR 18744);1997 年 11 月 17 日(62 FR 61332);1999 年 10 月 21 日(64 FR 56792); 2001 年 10 月 25 日(66 FR 54014);2003 年 11 月 7 日(68 FR 63098)。CERCLA 修订版第 104(i)(3) 节指示 ATSDR 管理员为清单上的每种物质准备一份毒理学概况。
毒理学概况是根据 1986 年《超级基金修正和重新授权法案》(SARA)(公法 99-499)制定的,该法案修正了 1980 年《综合环境反应、补偿和责任法案》(CERCLA 或超级基金)。这项公法要求 ATSDR 为 CERCLA 国家优先事项清单上设施中最常见且对人类健康构成最大潜在威胁的危险物质编制毒理学概况,这些物质由 ATSDR 和 EPA 确定。2005 年 12 月 7 日(70 FR 72840)在《联邦公报》上公布了修订后的 275 种危险物质优先清单。要查看物质清单的先前版本,见 1987 年 4 月 17 日(52 FR 12866)、1988 年 10 月 20 日(53 FR 41280)的联邦公报通知; 1989 年 10 月 26 日(54 FR 43619);1990 年 10 月 17 日(55 FR 42067);1991 年 10 月 17 日(56 FR 52166);1992 年 10 月 28 日(57 FR 48801);1994 年 2 月 28 日(59 FR 9486);1996 年 4 月 29 日(61 FR 18744);1997 年 11 月 17 日(62 FR 61332);1999 年 10 月 21 日(64 FR 56792);2001 年 10 月 25 日(66 FR 54014);以及 2003 年 11 月 7 日(68 FR 63098)。经修订的《综合环境影响赔偿责任法》第 104(i)(3) 节指示 ATSDR 管理员为清单中的每种物质准备一份毒理学概况。
毒理学概况是根据 1986 年《超级基金修正和重新授权法案》(SARA)(公法 99-499)制定的,该法案修正了 1980 年《综合环境反应、补偿和责任法案》(CERCLA 或超级基金)。这项公法要求 ATSDR 为 CERCLA 国家优先事项清单上设施中最常见且对人类健康构成最大潜在威胁的危险物质编制毒理学概况,这些物质由 ATSDR 和 EPA 确定。2005 年 12 月 7 日(70 FR 72840)在《联邦公报》上公布了修订后的 275 种危险物质优先清单。要查看物质清单的先前版本,见 1987 年 4 月 17 日(52 FR 12866)、1988 年 10 月 20 日(53 FR 41280)的联邦公报通知; 1989 年 10 月 26 日(54 FR 43619);1990 年 10 月 17 日(55 FR 42067);1991 年 10 月 17 日(56 FR 52166);1992 年 10 月 28 日(57 FR 48801);1994 年 2 月 28 日(59 FR 9486);1996 年 4 月 29 日(61 FR 18744);1997 年 11 月 17 日(62 FR 61332);1999 年 10 月 21 日(64 FR 56792);2001 年 10 月 25 日(66 FR 54014);以及 2003 年 11 月 7 日(68 FR 63098)。经修订的《综合环境影响赔偿责任法》第 104(i)(3) 节指示 ATSDR 管理员为清单中的每种物质准备一份毒理学概况。
毒理学概况是根据 1986 年《超级基金修正和重新授权法案》(SARA)(公法 99-499)制定的,该法案修正了 1980 年《综合环境反应、补偿和责任法案》(CERCLA 或超级基金)。这项公法要求 ATSDR 为 CERCLA 国家优先事项清单上设施中最常见且对人类健康构成最大潜在威胁的危险物质编制毒理学概况,这些物质由 ATSDR 和 EPA 确定。2005 年 12 月 7 日(70 FR 72840)在《联邦公报》上公布了修订后的 275 种危险物质优先清单。要查看物质清单的先前版本,见 1987 年 4 月 17 日(52 FR 12866)、1988 年 10 月 20 日(53 FR 41280)的联邦公报通知; 1989 年 10 月 26 日(54 FR 43619);1990 年 10 月 17 日(55 FR 42067);1991 年 10 月 17 日(56 FR 52166);1992 年 10 月 28 日(57 FR 48801);1994 年 2 月 28 日(59 FR 9486);1996 年 4 月 29 日(61 FR 18744);1997 年 11 月 17 日(62 FR 61332);1999 年 10 月 21 日(64 FR 56792);2001 年 10 月 25 日(66 FR 54014);以及 2003 年 11 月 7 日(68 FR 63098)。经修订的《综合环境影响赔偿责任法》第 104(i)(3) 节指示 ATSDR 管理员为清单中的每种物质准备一份毒理学概况。
设计,优化和制造。数值技术,例如有限元分析,验收动力学,第一原理计算和多尺度建模,可以有效地预测机构属性并优化设计。与此同时,人工智能和大数据分析可以通过机器学习发现新材料和反向设计。智能手段与自适应控制系统相结合,实现了生产过程的自动化和实时优化,从而提高了制造效率和精度。尽管数据和计算成本不足,但随着技术的进步,材料科学却朝着更高的精度和自动化方向发展。