1 魏思奇 , 余双舰 , 吴思武 , 唐征海 , 郭宝春 , 张立群 .基于功能性橡胶颗粒集成的宽温域橡胶阻尼材料 .高分子学报 , 2024 , 55(3), 338 - 348.2 Sun, T. L.; Gong, X. L.; Jiang, W. Q.; Li, J. F.; Xu, Z.B.; Li, W. H. Study on the damping properties of magnetorheological elastomers based on cis -polybutadiene rubber.Polym.Test , 2008 , 27(4), 520 - 526.3 Prasertsri, S.; Rattanasom, N. Mechanical and damping properties of silica/natural rubber composites prepared from latex system.Polym.Test , 2011 , 30(5), 515 - 526.4 Liu, C.; Fan, J.; Chen, Y.Design of regulable chlorobutyl rubber damping materials with high-damping value for a wide temperature range.Polym.Test , 2019 , 79, 106003.5 Soleimanian, S.; Petrone, G.; Franco, F.; De Rosa, S.; Kołakowski, P. Semi-active vibro-acoustic control of vehicle transmission systems using a metal rubber-based isolator.Appl.Acoust., 2024 , 217, 109861.6 唐征海 , 郭宝春 , 张立群 , 贾德民 .石墨烯 / 橡胶纳米复合材料 .高分子学报 , 2014 , (7), 865 - 877.7 Xia, S.; Chen, Y.; Tian, J.; Shi, J.; Geng, C.; Zou, H.; Liang, M.; Li, Z.Superior low-temperature reversible adhesion based on bio-inspired microfibrillar adhesives fabricated by phenyl containing polydimethylsiloxane elastomers.Adv.Funct.Mater., 2021 , 31(26), 2101143.8 Zhu, Q.; Wang, Z.; Zeng, H.; Yang, T.; Wang, X.Effects of graphene on various properties and applications of silicone rubber and silicone resin.Compos.Part A: Appl.Sci.制造。,2021,142,106240。9刘z。 Shi,J。; Zhao,n。; Li,Z。通过环状三磷酸磷酸基碱催化的环环(CO)聚合物化,高分子量的高分子量聚二乙基硅氧烷和随机聚二甲基氧烷-Co-二甲基硅氧烷)共硅氧烷。欧洲。polym。J.,2022,173,111280。10什叶,J。; Liu,Z。; Zhao,n。; Liu,s。; Li,Z。由三挥手有组织酶催化为明确定义的聚(二甲基硅氧烷)S催化的己二甲基甲硅氧烷的己二甲硅氧烷的控制环的聚合。大分子,2022,55(7),2844-2853。11 Rius-Bartra,J.M。; Ferrer-Serrano,n。; Agulló,n。; Borrós,S。高抗性有机硅橡胶减少了杨的模量。 介电硅橡胶的工业选择。 J. Appl。 polym。 SCI。 ,2023,140(37),E54405。 12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。11 Rius-Bartra,J.M。; Ferrer-Serrano,n。; Agulló,n。; Borrós,S。高抗性有机硅橡胶减少了杨的模量。介电硅橡胶的工业选择。J. Appl。polym。SCI。 ,2023,140(37),E54405。 12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。SCI。,2023,140(37),E54405。12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。橡胶化学。技术。,1986,59(2),255-262。13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。Macromolecules,2017,50(9),3532-3543。14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。J. Appl。polym。SCI。SCI。,2019,136(12),47231。15 Wang,Y。; Cao,R。; Wang,M。;刘x。 Zhao,X。; lu,y。;冯,a。; Zhang,L。通过阴离子共聚和随后的环氧化的苯基硅橡胶设计和合成苯基硅橡胶。 聚合物,2020,186,122077。 16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。 polym。 测试。 ,2021,93,106885。 17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。15 Wang,Y。; Cao,R。; Wang,M。;刘x。 Zhao,X。; lu,y。;冯,a。; Zhang,L。通过阴离子共聚和随后的环氧化的苯基硅橡胶设计和合成苯基硅橡胶。聚合物,2020,186,122077。16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。 polym。 测试。 ,2021,93,106885。 17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。polym。测试。,2021,93,106885。17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。J. Appl。polym。SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。SCI。,2023,140(1),E53262。18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。polym。eng。SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。SCI。,2024,10.1002/pen.26663。19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。J. Appl。polym。SCI。 ,2011,119(5),2737-2741。SCI。,2011,119(5),2737-2741。
摘要:硅像素传感器上的防护环结构有益于提高传感器的高压承受性能。为了评估防护圈结构对硅像素传感器的保护效果,模拟和分析了三种防护环结构。通过技术计算机辅助设计进行了三个防护环结构的两个维度建模,并使用软件内置的电气模型模拟了三个防护圈结构的I -V特性。当前收集环的存在可以使像素可以承受高压,并且不等的防护戒指,不同的空间后卫环,内部和外部等距的Al悬架,并且多个防护戒指结构有益于进一步增加传感器的击穿电压。关键词:PIN二极管silicon Pixel Sensor;防护戒指;耐用高压;技术计算机辅助DEGSIN OCIS代码:280.4750 ;230。0040 ;230.5160
[25] Shi K W,Yow K Y,LoC。单束和多光束激光槽过程参数开发和40 nm节点的模具特性 - k/ulk Wafer [C]∥2014IEEE 16th 16th Electronics包装技术会议(EPTC),2014年12月3日至5日,2014年12月3日,新加坡。纽约:IEEE出版社,2015:752-759。
发售价预期将于 2023 年 1 月 6 日星期五左右由我们与独家保荐人兼总协调人(代表承销商)协商确定,且无论如何不迟于 2023 年 1 月 13 日星期五。若因任何原因,我们与独家保荐人兼总协调人(代表承销商)未能于 2023 年 1 月 13 日星期五(香港时间)或之前就发售价达成一致,则全球发售(包括香港公开发售)将不会进行并失效。除非另有公布,否则发售价将不超过每股发售股份 7.16 港元,目前预期将不低于每股发售股份 5.7 港元。申请香港发售股份的投资者须于申请时支付最高发售价每股发售股份 7.16 港元,另加 1.0% 经纪佣金、0.0027% 证监会交易征费、0.00565% 香港联交所交易费及 0.00015% AFRC 交易征费;若发售价低於每股发售股份 7.16 港元,则有关款项可获退还。
ISSN 1004‑9037,代码元SCYCE4数据采集与处理杂志卷。37,编号6,2022年11月,第pp。1401-1411 doi:10。16337/j。1004-9037。2022。06。020ⓒ2022撰写的数据采集与处理杂志
编码特征作为预测结果,邀请用户进行认知情况调 研。从用户调研数据的计算结果可知,用户对不同特 征编码的认知存在一定的共性,有共同的认知习惯。 1 )就属性语义来看,认知效率主要受色相、明 度、饱和度、尺寸、位置、形状的影响。色相:国军 标对色彩的应用有明确的规范,在进行色相编码时, 应考虑用户对专用色彩属性的认知习惯,严格遵守色 彩使用规范。对于没有硬性规定的色彩,也应以用户 过往的知识、经验为基础进行编码设计。如,在界面 设计中,一般认为红色表示危险,黄色表示警告,绿 色表示安全。明度:实验表明,在深色背景下,明度 越高信息等级越高。战术显控系统复杂性较高,合适 的明度编码设计适合应用于信息层级设计,能够有效 降低用户的学习成本。饱和度:饱和度取决于该色中 含色成分和消色成分(灰色)的比例。含色成分越大, 饱和度越大;消色成分越大,饱和度越小 [14] 。高饱和 度的色彩编码方式更能引起视觉关注,帮助用户集中 注意力。形状:在战术显控系统中,涉及形状属性的 元素主要为图形和符号,包括通用类和特殊类。在进 行形状编码时,现有图符应遵循沿用的原则,新的图 符应结合现实形态、行业背景进行设计,以符合用户 认知习惯、缩短学习过程,提高交互效率。尺寸:根 据实验结果显示,信息尺寸的大小与信息的重要等级 成正比,信息越重要,尺寸越大。位置:用户对显示 屏上的信息关注度依次为中间、左上方、右上方、左 下方、右下方 [15] 。在进行界面布局时,应注意信息等 级与其在界面中位置的一致性,同时要保证同类信息 的位置编码统一。 2 )就情感语义来看,战时用户的生理和心理负 荷较高,任务情景的不确定性易增加用户的操作压 力 [5] 。在进行交互界面设计时应考虑信息编码元素的 情感性。从实验结果来看,影响情感语义的特征主要 为形状和色彩。尖锐的形态容易让用户产生较大的心 理压力,而圆润浑厚的形状更容易使用户平静。在进 行形状编码时,可采用倒角的设计手法。根据蒙赛尔 色彩体系对色彩要素的划分及实验结果,战术显控系 统的主色可以选用冷色调,明度、饱和度不宜过高, 以避免色彩刺激增加用户的焦虑感。而对于重点信息 和即时变化类信息,可采用高明度或高饱和度的色 彩,以提高用户的警觉性。
按钮布局的一致性,机载显控系统的人机工效研究也 逐渐得到了相关领域的重视。为了解决仪表板日益拥 挤的问题,工程师在第 2 代机电伺服仪表的基础上对 飞行仪表进行综合,也对指示相关信息的仪表进行综 合,减少仪表数量;同时将无线电导航和其他经过计 算机加工的指引信息综合进相关的显示器中,形成第 3 代飞机仪表,即综合指引仪表。综合指引仪表不但 可以显示飞机综合的实时状态信息,同时还通过指引 信息告诉飞行员如何正确操纵飞机,以达到预定飞行 状态或目的地 [5] 。第 3 代头盔显示系统首次采用虚拟 成像技术,可直接将虚拟画面投射到驾驶员的面罩 上,配合计算机图像和数据处理运算技术,具备了实 时呈现画面的能力。 以人工智能、大数据为代表的信息技术在军事领 域广泛应用,现代战争形态演变不断突破,向着机械 化、信息化、智能化的方向发展。进入 21 世纪,触 屏及语音交互的方式取代了烦琐复杂的硬件按钮操 作,更为清晰的数字化屏幕也为信息显示提供了更大 的发展空间。第 4 代新型战斗机的机载设备通过更 大、更清晰的数字化屏幕呈现出更加多样的信息内 容。这一时期的人机交互主要通过数字屏幕进行信息 输出,通过语音、触摸屏和简洁的按键等多通道进行 信息输入。未来飞行员头盔的发展趋势是研制功能强 大、集综合性防护于一体的头盔系统,全息投影技术 也会逐渐发展成熟并应用于头盔显示器中 [6] 。历代战 机座舱显控界面见图 1 。 对战机座舱显控系统的发展,各领域的研究人员 针对人因工效、人机交互、座舱显示技术、人机协同 等方面进行了一系列研究。总结 20 世纪 80 年代至今具 有代表性的人物及研究成果,其研究成果引用量较高, 为座舱显控发展提供了理论依据或技术支撑,见表 1 。 军事技术的发展促使战场环境复杂性的大幅提 升,如 F–35 的大屏幕显示器将远不能满足飞行员获 取信息数据流的显示需求,而未来战斗机为了隐身, 会减小座舱空间,进而缩小座舱显示面积 [25] 。座舱内 的系统控制器将尽可能简化,除了保留一些控制飞行 的基本操作杆和少数与安全相关的控制器,其余的操