常州银河世纪微电子有限公司(GME)保留对本文中任何产品信息(版权所有)进行更正、修改、改进或其他更改的权利,恕不另行通知。GME 不承担因本文所述任何产品的应用或使用而产生的任何责任;也不转让其专利权或他人权利下的任何许可。
自20世纪40年代问世以来,晶体管就不断改变着我们的生活。作为逻辑门和集成电路(芯片)的核心元件,晶体管无疑在推动计算机、智能手机、平板显示器、物联网乃至所有电子或电气系统的发展方面发挥着无与伦比的作用。过去几十年来,主流晶体管通常由硅材料和金属氧化物等无机半导体制成,有利于实现高迁移率、快速开关速度和优异的稳定性。因此,硅晶体管和金属氧化物半导体场效应晶体管被广泛应用于电子应用。然而,尽管这些晶体管的制造规模要小得多以满足摩尔定律的预测,但它们却非常坚硬,并且几乎接近速度和功耗的基本极限。由于未来对具有机械灵活性/坚固性和低功耗的晶体管的需求,功能材料、设备配置和集成处理技术的创新以促进从刚性设备到柔软、耐用和生物相容性的设备的演变势在必行。1
摘要。由于无序量子点的强轨道量子化,在标准 p 型硅晶体管中可以实现单空穴传输和自旋检测。通过使用充当伪栅极的阱,我们发现了表现出泡利自旋阻塞的双量子点系统的形成,并研究了漏电流的磁场依赖性。这使得可以确定空穴自旋状态控制的关键属性,其中我们计算出隧道耦合 tc 为 57 µ eV,短自旋轨道长度 l SO 为 250 nm。使用无序量子点时,界面处表现出的强自旋轨道相互作用支持电场介导控制。这些结果进一步激励我们,可以使用易于扩展的平台(例如行业标准硅技术)来研究对量子信息处理有用的相互作用。
摘要 提出了一种用于纳米线晶体管 DC 和 RF 小信号模拟的数值框架,该框架基于泊松、薛定谔和玻尔兹曼传输方程的自洽解,并且在从弱到强粒子散射的整个范围内都是稳定的。所提出的方法不会因将玻尔兹曼传输方程变换到能量空间而产生缺陷,并且可以处理准弹道情况。这是研究等离子体共振和其他高迁移率现象的关键要求。内部求解器通过先前开发的基于 H 变换的模拟器的结果进行验证,该模拟器适用于具有强散射的传统 N + NN + 硅晶体管。然后,将其结果与基于矩的模型的结果进行比较,结果表明这些结果不能令人满意地描述准弹道传输状态下的电子动力学。此外,发现接触处传输模型的内部边界条件对等离子体共振有显著影响,而基于物理的热浴边界条件强烈抑制了它们。
长期存在的更大计算能力的探索已经存在。自1960年代以来,现代电脑中的晶体管一直遵循摩尔定律。然而,随着硅晶体管继续扩大规模,它们面临挑战,例如由于有限的亚阈值挥杆,与高温操作不兼容以及缺乏可重新选择性,诸如州外泄漏功率的增加。因此,正在研究新型的计算设备以解决这些问题。随着微型/纳米制作技术的进步,Me-Chanical计算已成为晶体管的有前途的替代品,具有通过利用自由dom的机械性程度来利用超级功耗,高温兼容性和可构性的优势。尤其是微型/纳米机电系统(MEMS/NEMS)技术现在正在积极探索以实现未来的计算设备。可以根据其操作方式(图1):联系人(主要是开关/继电器)和非接触模式(通常是谐振器),我们可以在下面进行更详细的讨论。基于MEMS/NEMS开关/继电器的机械计算。MEMS开关已经研究了数十年。多年来,已经对具有不同驾驶机制的MEM/NEM开关的不同设计进行了启发[1],静电MEMS/NEMS开关受到了最广泛的探索。静电内存和NEM开关通常包含可移动电极(梁或膜)和静态反电极,并由小空气或真空间隔隔开。在OFF状态下,这种物理分离可确保零泄漏电流。除了接近零泄漏电流和突然开关外,NEM开关对苛刻的环境具有比金属氧化物 - 氧化型局部效果(MOSFET)更具抵抗力。基于这些SIC NEMS开关的SIC纳米线开关和逻辑逆变器可以可靠地函数可靠地函数,而MOSFET会失败