摘要 本文全面概述和总结了在 M11 测试设施和位于 Lampoldshausen 的 DLR 物理化学实验室进行的研究和测试活动。研究重点是先进的火箭推进剂和用于空间技术的新材料。此外,还将展示和讨论有关超音速流动和超音速冲压发动机冷却的活动。还介绍了机器学习方法在火箭发动机控制中的应用。先进火箭推进剂方面的活动包括对 ADN(二硝酰胺铵)基推进剂、过氧化氢、基于一氧化二氮 (HyNOx) 的单推进剂和双推进剂、绿色自燃双推进剂以及凝胶和硝基甲烷基推进剂的研究。对于每种推进剂或推进剂组合,总结了 DLR 内部项目的主要研究和测试结果。此外,还介绍了欧盟和欧空局关于先进推进剂和在 DLR Lampoldshausen 进行的研究的项目的部分结果。
另一方面,我们可以通过不同的方法检查文献是否对固定相的表征进行表征。但是,所有这些方法的起点是基于选择作为单个二阶相互作用的一些化合物的保留数据,这些相互作用可能会在气相色谱分离下分析物和固定相之间发生。在1966年发表的文章中,Rohrschneider表征了22个Sta tionary阶段的极性,其保留指数的5种模型组分的保留指数有所不同,这些模型组件是苯,乙醇,乙醇,乙基甲基酮,硝基甲烷和吡啶[3]。参考值的差异值是通过在Alololar squalane固定相上测量的模型化合物的指标提供的。使用这些测试化合物,他涵盖了二阶相互作用,例如分散,π-π和诱导相互作用,电子对受体和电子对供体行为。McReynolds [4]于1970年进一步开发了这种方法,后者部分取代了测试化合物并部分扩展了它们。McReynolds常数(MRC)被广泛用于描述气相色谱站的极性Ary相,为均匀的COM Parison提供了机会。对于CHRO Matographic指数(CPI),将量表定义为0到100,其中Smocalane代表最极性的零点,而100%Cyano Propyl Siloxane相代表最极性100值。根据测量的MRC val UES的一定固定相可以放在0到100之间的尺度上。1990年Abraham等。1990年Abraham等。许多作者根据不同的考虑(McReynolds收集的大量CHRO Matographic数据)(在两个温度LEV ELS处于77个固定相测量的376种化合物的保留指数,在226个固定阶段的10种化合物的保留指数[5] [5]。介绍了Solva Tion参数模型,以描述具有5个常数的McReynolds 77平台ARY相位,而不是一个单个极性指数[5]。基于溶剂化参数模型Poole [1],使用多个线性回归分析构建了52个壁涂层毛细管柱的色谱系统常数数据库。