由于其高理论能量密度,抽象锂硫电池被认为是能源存储设备的有前途的候选者。提出了各种方法,以打破阻止Li-S电池实现实际应用的障碍。最近,研究人员认可了极性材料与多硫化物之间强烈的化学相互作用的重要性,以提高LI-S电池的性能,尤其是在班车效应方面。极性材料与非极性材料不同,由于其内在的极性而没有任何修饰或掺杂的多硫化物相互作用,从而吸收了极性多硫化物,从而抑制了臭名昭著的穿梭效应。此处审查了LI-S电池极性材料的最新进展,尤其是化学的极线相互作用对固定溶解的多硫化物的效果,并且讨论了极性材料的固有性能与LI-SCTURTIES的电化学性能之间的关系。极性材料,包括阴极中的极性无机物和极性有机物作为LI-S电池的粘合剂。最后,还提出了LI-S电池中使用的极性材料的未来方向和前景。
•基于约翰·克尔斯蒂安·里尔(Johann Chrstian Reil)在1809年的最初发现的灌肠或岛屿岛,是淹没的(隐藏的)部分(隐藏的)部分(隐藏的)部分在硫磺外侧的地面上。它在周围的皮质区域过度时才可以看到,而sul又可以看到libs lips sul sul sul taul taul taul taull the Brain的表面。它的形状是三角形的,并被沟周围环绕,除圆形的圆形沟在其顶点下方,但在其顶端被称为Limen Insulae,它与前穿孔物质是连续的。
摘要:锂硫电池(LSB)是最有希望的下一代电池技术之一。第一个原型细胞比常规锂离子电池(LIB)显示出更高的特异能量,并且活性材料具有成本效益且普遍丰富。然而,Li-S电池仍然遭受了几个局限性,主要是周期寿命,细胞的频率以及缺乏组件生产价值链。由于该电池系统基于复杂的转换机制,因此电解质起着关键作用,不仅是针对特定能量的,而且还起着速率能力,循环稳定性和成本。在此,我们报告了基于乙二醇 - 乙酰溶剂的电解质,四甲氧基糖(TEG)和四甲氧基糖糖(TMG)。这些溶剂之前已经检查了超级电容器和Libs,但从未对LSB进行研究,尽管它们表现出了一些有益的特性,并且由于它们是几种化学物质的前体,因此已经建立了生产价值链。通过在TXG:DOL溶剂混合物中调节溶剂比和LITFSI浓度来建立一个专门适应的电解质组成。所获得的电解质显示出长的循环寿命以及较高的库仑效率,而无需使用Lino 3,这是一种正常导致细胞通信和安全问题的组件。此外,还进行了多层Li-S袋细胞中的成功评估。电解质得到了彻底的表征,并讨论了其硫转化机制。
本文介绍了锂硫 (Li-S) 储能电池的应用,同时展示了几种缓解其电化学挑战的技术的优缺点。无人机、电动汽车和电网规模储能系统是 Li-S 电池的主要应用,因为它们成本低、比容量高、重量轻。然而,多硫化物穿梭效应、低电导率和低库仑效率是 Li-S 电池面临的关键挑战,导致体积变化大、树枝状生长和循环性能受限。固态电解质、界面夹层和电催化剂是缓解这些挑战的有前途的方法。此外,纳米材料能够改善 Li-S 电池的动力学反应,这是基于纳米粒子的几种特性,将硫固定在阴极中,稳定阳极中的锂,同时控制体积增长。考虑到基于可再生能源的环保系统,Li-S 储能技术能够满足未来市场对高功率密度、低成本的先进充电电池的需求。
并非 80 年代的锂金属 首次尝试制造带有锂金属阳极的电池是在 20 世纪 80 年代。这些尝试未能抑制锂枝晶或电阻副产物的形成,这些副产物要么导致危险的操作条件,要么缩短循环寿命。因此,该技术从金属锂发展到锂离子 (Li-ion) 电池。Sion Power 通过开发一种多方面的方法来保护锂金属阳极,成功克服了困扰历史锂金属化学的问题。
10:20 argyrodite固体电解质作为离子导体和活性材料前体在锂 /硫磺固体固体电池中的双重作用KonradMünch,Justus-liebig-universitätgiessen< / div>
抽象目的:与植入物相关的感染代表了导致发病率和死亡率增加的重要并发症。确定引起感染的微生物剂对于成功治疗至关重要。尽管周围关节感染(PJIS)随着时间的推移而发生的发生率,但尚无100%灵敏度的诊断测试来准确识别这些感染。本研究的目的是确定将超声处理与Dithiothreitol(DTT)相结合是否提高了诊断植入物相关感染的准确性和敏感性。方法:具体来说,本研究包括30名因怀疑感染而因植入物去除的患者。植入物分为两个段:使用超声处理方法处理一个段,另一种是通过组合DTT和超声处理来处理的。结果:对于合并组而言,平均值为81.17 +/- 67.53 cfu/ml,对于组合组,平均值为109.7 +/- 62.78 cfu/ml。结论:我们的研究结果表明,DTT和超声处理的组合增加了菌落数量约为28.53 CFU/ML,这增强了检测到骨科植入物相关感染的可能性。
1 使用交流电导率测量估计非晶态 Se 80 Te 20 和 Se 80 Te 10 M 10(M= Cd、In、Sb)合金中的局部态密度,N. Chandel、N. Mehta 和 A. Kumar,《电子材料杂志》,44 (2015) 2585-2591。2 多组分 Se 78-x Te 20 Sn 2 Bi x(0 ≤ x ≤ 6)硫属化物玻璃的一些热物理性质的成分依赖性,A. Sharma 和 N. Mehta,《材料科学杂志》,50 (2015) 210-218。 3 多组分 Se 78-x Te 20 Sn 2 Pb x 硫系玻璃的热物理性质 A.Sharma 和 N. Mehta,材料化学与物理,161 (2015) 35-42。 4 使用等转化方法研究锌掺入玻璃硒的非等温结晶,C. Dohare 和 N. Mehta,材料快报,138 (2015) 171-174。 5 相变材料的时间顺序概述,N. Mehta,高级科学与工程评论,4 (2015) 173-182。 6 使用交流电导率测量确定玻璃态 Se 98 M 2(M = Ag、Cd 和 Sn)合金中的缺陷态密度,A. Sharma 和 N. Mehta,《测量》,75 (2015) 69–75 7 玻璃态 Se 90 In 10-x Ag x 中的玻璃转变和结晶动力学,Karishma Singh、N. Mehta、SK Sharma、A. Kumar,《材料聚焦》,4 (2015) 457-463。8 Augis-Bennett 关系在确定某些富 Se 硫属化物玻璃中玻璃转变活化能的适用性,S. Saraswat、N. Mehta 和 SD Sharma,《材料研究与技术杂志》,5 (2016) 111-116。 9 玻璃态 Se 80-x Te 20 Sb x 合金在玻璃转变区比热测量的热分析,S. Saraswat、N. Mehta 和 SD Sharma,《相变》,89 (2016) 84-93。10 Se-Te-Sn-Ag 四元体系多组分硫属化物玻璃的一些热机械和介电性能研究,A. Srivastava 和 N. Mehta,《合金与化合物杂志》,658 (2016) 533-542。
摘要:我们预测磁性铬基过渡金属二硫属化物 (TMD) 单层在其 Janus 形式 CrXTe(其中 X = S、Se)中具有非常大的自旋轨道扭矩 (SOT) 能力。Janus 结构固有的结构反演对称性破坏导致巨型 Rashba 分裂产生较大的 SOT 响应,相当于在非 Janus CrTe 2 中施加 ∼ 100 V nm −1 的横向电场所获得的响应,这完全超出了实验范围。通过对精心推导的 Wannier 紧束缚模型进行传输模拟,发现 Janus 系统表现出与最有效的二维材料相当的 SOT 性能,同时由于其平面内对称性降低,还允许无场垂直磁化切换。总之,我们的研究结果表明,磁性 Janus TMD 是超紧凑自感应 SOT 方案中终极 SOT-MRAM 设备的合适候选者。关键词:自旋轨道扭矩、过渡金属二硫属化物、二维材料、范德华铁磁体