阳台光伏(PV)系统,也称为Micro-PV系统,是一个小型PV系统,该系统由一个或两个太阳能模块组成,其输出为100 - 600 WP,以及相应的逆变器,使用标准插头将可再生能源馈入房屋网格。在本研究中,我们证明了将商业锂离子电池整合到商业微电视系统中。我们首先以第二次分辨率显示了一年的模拟,我们用来评估电池和光伏大小对自我消费,自给自足和每年节省的影响。然后,我们使用两个不同的架构将电池集成到Micro-PV系统中,开发和操作实验设置。在被动混合体系结构中,电池是与PV模块的平行电连接。在活动混合体系结构中,使用了其他DC-DC转换器。两个架构都包括衡量模块逆变器对电池的最大功率点跟踪的措施。在实际太阳辐照度条件下,在连续运行中测试了带有300 wp PV和555 WH电池的PV/电池/逆变器系统。两个架构都能够保持稳定的操作,并证明了从白天到夜晚的光伏能量的转移。观察到与没有电池的参考系统相当的系统效率。因此,这项研究证明了主动和被动耦合体系结构的可行性。
锂离子电池因具有较高的能量密度和较长的循环寿命,被广泛应用于便携式电子设备、电动汽车和大型储能装置中。目前,商业化锂离子电池主要采用循环稳定性高的插层型锂储能材料作为正极和负极材料。然而,插层型正极材料如LiFePO 4 、LiMnO 4 、LiCoO 2 等理论容量低(< 200 mAh·g−1),不能满足日益增长的高能量密度需求。以非插层型锂储能材料为代表的锂硫(Li-S)电池具有很高的能量密度(2600 W·h·kg−1),是目前商业化锂离子电池的8倍以上[1,2],被认为是最有前途的高能量密度二次电池之一。硫及其完全锂化状态的 Li 2 S 均可用作 Li-S 电池的活性正极材料。硫基复合正极应与锂金属或含锂负极结合。低电子和离子电导率是元素硫的固有特性,
二维 (2D) 过渡金属二硫属化物已成为下一代光电和自旋电子器件的有前途的平台。使用胶带进行机械剥离仍然是制备最高质量的 2D 材料(包括过渡金属二硫属化物)的主要方法,但总是会产生小尺寸的薄片。这种限制对需要大规模薄片的研究和应用构成了重大挑战。为了克服这些限制,我们探索了使用最近开发的动力学原位单层合成法 (KISS) 制备 2D WS 2 和 WSe 2。特别是,我们关注了不同基质 Au 和 Ag 以及硫族元素原子 S 和 Se 对 2D 薄膜产量和质量的影响。使用光学显微镜和原子力显微镜表征了 2D 薄膜的晶体度和空间形貌,从而对剥离质量进行了全面评估。低能电子衍射证实 2D 薄膜和基底之间没有优先取向,而光学显微镜则表明,无论使用哪种基底,WSe 2 在生成大单层方面始终优于 WS 2。最后,X 射线衍射和 X 射线光电子能谱表明 2D 材料和底层基底之间没有形成共价键。这些结果表明 KISS 方法是非破坏性方法,可用于更大规模地制备高质量 2D 过渡金属二硫属化物。
摘要:锂邻磷酸锂(Li 3 PS 4)已成为固态电池电池的有前途的候选人,这要归功于其高电导阶段,廉价的组件和较大的电化学稳定性范围。尽管如此,Li 3 PS 4中锂离子转运的显微镜机制远非充分理解,PS 4动力学在电荷运输中的作用仍然存在争议。在这项工作中,我们建立了针对最先进的DFT参考的机器学习潜力(PBESOL,R 2扫描和PBE0),以在Li 3 PS 4(α,α,β和γ)的所有已知阶段(α,α,β和γ)的所有已知阶段解决此问题,以实现大型系统大小和时间尺度。我们讨论了观察到的Li 3 PS 4的超级离子行为的物理来源:PS 4翻转的激活驱动了结构性过渡到高导电阶段,其特征在于Li地点的可用性增加以及锂离子扩散的激活能量的急剧降低。我们还排除了PS 4四面体在先前声称的超级离子阶段中的任何桨轮效应,这些阶段以前声称,由于PS 4 Flips的速率和Li-ion Hops在熔化以下的所有温度下,li-ion扩散。我们最终通过强调了Nernst -Einstein近似值以估计电导率的失败来阐明电荷转运中外部动力学的作用。我们的结果表明,对目标DFT参考有很强的依赖性,而PBE0不仅对电子带隙,而且对β-和α -LI 3 PS 4的电导率提供了最佳的定量一致性。
在这四项研究中,喹硫平的Hemifumarato de Quetiapine在减少MADRS量表(Montgomery-Asberg抑郁量表)方面优于安慰剂。喹硫平半叶叶酸的抗抑郁作用在第8(第1周)很重要,并一直保持到研究结束(第8周)。queiapine 300或600 mg半叶虫治疗在夜间减少躁郁症抑郁症患者的抑郁症和焦虑症状。与安慰剂相比,每剂喹硫平胺的治疗中出现的躁狂发作更少。在四项研究中的三项中,对于300 mg和600 mg剂量组,在减少MADR的第10项和3个研究中的第10项衡量的自杀思想中观察到了与安慰剂相关的显着改善,300 mg剂量组,对各种功能领域的生活质量和报告的满意度,使用满意度和质量的质量(q-)(q-)(q-)(q-)(q-q-)(q-)(q- Q-)。
对现有科学文献的比较分析表明,基于陶瓷(Al 2 O 3 、TiO 2 、SiO 2 )及其主轴连接制成的传感器既有优点,也有缺点。采用特殊工艺方法制造的SiO2多孔材料成本高,对SO 2 、CO 2 、CO、NH 3 、CH 4 等有毒气体的灵敏度低,等效逆反应时间<10秒[1]。研究表明,由薄非晶态片状硫属玻璃(As 2 (Se 0.9 Te 0.1 ) 3 、As 2 Se 3 )制成的传感器的灵敏度取决于它们的成分,其惰性极低。主要原因是作为电子过程的体电导率变化发生得相当快[2]。另一方面,硫属化物玻璃传感器(As 4 S 3 和 As-Ge-Te)体积小、成本低、能耗低,灵敏度高 [3]。基于硫属化物 As 4 S 3 和 As-Ge-Te 玻璃薄层的电阻式传感器对丙胺 (C 3 H 7 NH 2 ) 和二氧化氮 (NO 2 ) 介质高度敏感,可成功用于监测这些介质,因为它们具有对湿度的动态响应、高恢复性和可逆性的特点 [3]。硫化物硫系玻璃(例如As-S)的波长主要在0.6~7微米范围内,而含锗(Ge)、硒(Se)、硫(S)和碲(Te)的硫系玻璃(Ge-S、Ge-Se、Ge-As-S、Ge-As-Se、Ge-As-Se)的波长更宽,光学透明度高(2~12微米),可以在相对较宽的温度范围内(200~300℃)作为更有效的光纤材料应用[4.5]。
摘要:我们之前曾报道过,甲硫替平是一种小分子,被称为非选择性血清素 5-HT 受体拮抗剂,可抑制 Hedgehog 受体 Ptch1 的阿霉素流出活性,并增强阿霉素对肾上腺皮质癌细胞的细胞毒性、促凋亡、抗增殖和抗克隆形成作用。本文表明,甲硫替平还可抑制阿霉素流出,并增加内源性过表达 Ptch1 的黑色素瘤细胞中的阿霉素细胞毒性。患有 BRAF V600E 突变的黑色素瘤患者可使用 BRAF V600E 抑制剂维莫非尼治疗,通常与 MEK 抑制剂曲美替尼联合使用。几乎所有患者最终都会对治疗产生耐药性,导致病情进展。本文报告称,甲硫替平通过增强维莫非尼和曲美替尼对这些细胞的细胞毒性,导致黑色素瘤细胞死亡,从而克服了 BRAF V600E 黑色素瘤细胞的耐药性。我们观察到,在维莫非尼中添加甲硫替平比单独使用维莫非尼更有效地阻止了耐药黑色素瘤细胞的迁移。我们的研究结果进一步证明,Ptch1 药物外排抑制可提高抗癌治疗的有效性,并克服表达 Ptch1 的黑色素瘤细胞的耐药性。
在过去十年中,许多晶体硫族化物由于其不寻常的物理特性和键合机制而引起了人们的关注。[1–6] 对于从相变存储器件[7–9]和光子开关[10–12]到热电器件[13–17]到利用拓扑效应的原型器件[18–20]的许多应用来说,通过改变化学计量或退火等方式来调整电传输的能力至关重要。 特别是,控制电荷载流子浓度和迁移率将非常有利。 例如,对于基于拓扑绝缘体的导电表面态的器件,通常重要的是消除不需要的体载流子源以抑制体传输。 对于热电装置,需要具有精确控制载流子浓度的 n 型和 p 型材料。这些方向的努力包括对一系列三元碲化物中载流子类型的化学调节[21,22],以及在 GeSbTe (GST) 化合物(如 Ge 2 Sb 2 Te 5 )和类似的无序硫族化物中通过热退火诱导的安德森跃迁的观察[23–27]。这些硫族化物位于 IV-VI 和 V 2 VI 3 材料之间的连接线上(例如,GST 中的 GeTe 和 Sb 2 Te 3 )。在前一种情况下,[22] 化学计量变化用于诱导从电子到空穴占主导地位的电荷传输转变,而在后一种情况下,[23–27] 化学计量保持恒定,通过退火结晶相来调节无序水平,导致在增加有序性时发生绝缘体-金属转变。非晶态 GST 结晶为亚稳态、无序、岩盐状相,其中 Te 占据阴离子位置,Ge、Sb 和空位随机占据阳离子位置。通过进一步退火立方体结构可获得稳定的六方相。这三个相都是半导体,但由于自掺杂效应,即由于原生点缺陷导致导电的块状状态被空穴占据,并将费米能级移向价带最大值,因此结晶态显示出高浓度的 p 型载流子。这种现象导致非晶相和结晶相之间产生强烈的电对比,这在
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。此版本的版权持有者于 2020 年 2 月 4 日发布。;https://doi.org/10.1101/2020.02.03.932194 doi: bioRxiv preprint
相关蛋白,以及其他细胞骨架相关蛋白(如中间丝、微管甚至信号蛋白)是否也参与二硫键诱导。目前尚不清楚内质网中的蛋白质为何对应激相关的二硫键不敏感,而内质网中由于氧化环境而形成大量二硫键 [3]。可能,由于还原环境,肌动蛋白细胞骨架等细胞质蛋白通常不会形成广泛的二硫键,因此在应激条件下,它们可能比细胞中其他位置的蛋白质对氧化还原更敏感 [4]。事实上,在葡萄糖饥饿的 SLC7A11 高细胞的粘着斑相关酪氨酸激酶中也发现了二硫键 [2]。酪氨酸激酶信号如何导致二硫键应激将成为研究的热门话题。此外,粘着斑与癌细胞侵袭和转移有关 [5]。粘附-侵袭-转移序列在二硫键凋亡中的作用值得进一步研究,例如在高 SLC7A11 表达抑制转移的情况下 [6]。