铁和硫化微生物在几种自然和工业过程中起着重要作用。卵螺旋体(L.)铁皮氏菌是一种铁氧化的微生物,具有明显的适应性,可在极端的酸性环境中蓬勃发展,包括堆的生物渗透过程,酸性矿山排水(AMD)和天然酸性水。从智利北部的工业生物渗透过程中分离出了牛皮乳杆菌(IESL25)的菌株。该菌株挑战以增加硫酸盐浓度的生长,以评估蛋白质表达谱,细胞形状的变化并确定潜在的兼容溶质分子。结果揭示了三种蛋白质的变化:琥珀酸COA(SCOA)合成酶,异氯酸盐脱氢酶(IDH)和天冬氨酸半二氢脱氢酶(ASD);当菌株以硫酸盐浓度升高时,它们显着表达。ASD在兼容溶质纤维蛋白的合成中起关键作用,该溶质纤维蛋白与羟基切除素一起使用矩阵辅助激光解吸/飞行质谱法的电离时间(MALDI-TOF)。IDH,SCOA和骨蛋白产生之间的关系可能是由于TCA循环引起的,在该周期中,这两种酶产生的代谢产物可以用作前体或中间体的生物合成。此外,在硫酸盐应激条件下生长时,观察到了甲乳杆菌IESL25中不同的丝状细胞形态。这项研究强调了在高硫酸盐水平的存在下可能会发现甲乳杆菌可能的细胞反应的新见解,这通常是在硫化物矿物质或AMD环境的生物含量中发现的。
消毒被认为是控制病毒在水中传播的关键步骤。氧化剂是有效的病毒消毒剂。然而,缺乏氧化剂对病毒失活的相对效率的结论性研究,而实际水样品中的消毒性能尚不完全清楚。在这项研究中,评估了臭氧(O 3),过氧化氢(H 2 O 2)和过氧基硫硫酸盐(PMS)的消毒作用,以不同剂量和接触时间的不同剂量和接触时间。结果表明,O 3以最短的接触时间为较低剂量的MS2 Coliphage灭活。为了实现MS2 coliphage的4-log消毒,所需的氧化剂剂量被排名为O 3 此外,全面比较了去离子水和次级e uent中三种氧化剂的消毒性能。 所有三种氧化剂均达到了MS2 Coliphage的4型灭活。 激发 - 发射矩阵(EEM)的结果表明,所有三种氧化剂均同步去除溶解有机物,并且O 3氧化了溶解的有机物,同时保持了消毒效率。 总结一下,O 3是这三种氧化剂中MS2 Coliphage消毒的最佳选择。 结果丰富了水中病毒消毒的研究,并为进一步研究工业实践中氧化剂的剂量提供了理论基础。此外,全面比较了去离子水和次级e uent中三种氧化剂的消毒性能。所有三种氧化剂均达到了MS2 Coliphage的4型灭活。激发 - 发射矩阵(EEM)的结果表明,所有三种氧化剂均同步去除溶解有机物,并且O 3氧化了溶解的有机物,同时保持了消毒效率。总结一下,O 3是这三种氧化剂中MS2 Coliphage消毒的最佳选择。结果丰富了水中病毒消毒的研究,并为进一步研究工业实践中氧化剂的剂量提供了理论基础。
Approximately 20% of adolescents in the United States experience ELS (such as physical, emotional, sexual abuse; neglect; interpersonal violence; poverty; hunger; food insecurity; low SES; racial discrimination; or family strife) at some point in their childhood, and these experiences influence health outcomes (Bomysoad & Francis, 2020; Hoffman et al., 2019).Felitti等人的开创性纸。(1998)开始了一项工作,研究了负面生活经历与成人健康和福祉之间的联系。作者发现经验丰富的EL和成人身体健康问题的数量之间存在牢固,积极的关系。具有ELS病史的成年人表现出较高的心血管健康,糖尿病,高胆固醇,内部化问题(焦虑,抑郁症)和药物使用障碍(SUD)(Bomysoad&Francis,2020; Clemens et al。,2020; Heim等,2008)。尽管ELS与整个生命周期的健康结果有关,但本叙事审查将重点介绍其在青春期(世界卫生组织定义为10-19岁)在内部化问题和物质使用的发展(组织,2001年)中的作用(由世界卫生组织定义为10-19岁)。本综述中使用了“性别差异”一词,以指物理和生理差异,而“性别差异”一词是指身份,社会和行为差异。虽然用二进制术语(男性/女性,男人/女人)广泛提及,但性别和性别都以液体马赛克的形式存在(Joel,2020; Suen等,2020)。
1 Institute of Micr obiology, Univ ersity of Gr eifswald, Gr eifswald, German y 2 Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany 3 Institute of Marine Biotechnology, 17489 Greifswald, Germany 4 Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt德国Helgoland,27498 Helgoland 5数学与计算机科学研究所,格雷夫斯瓦尔德大学,17489年,德国格里夫斯瓦尔德,6格雷夫斯瓦尔德大学,格雷夫斯特大学,17489年,德国格雷夫斯瓦尔德大学,德国格雷夫斯瓦尔德,德国,德国,Greifs Wald大学微生物学院,F Elix-Hausdorff-Straße8,17489 Greifswald,德国。电子邮件:mia.bengtsson@uni-greifsson.de编辑:[蒂尔曼·卢德斯(Tillmann Lueders)]
1 Institute of Micr obiology, Univ ersity of Gr eifswald, Gr eifswald, German y 2 Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany 3 Institute of Marine Biotechnology, 17489 Greifswald, Germany 4 Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt德国Helgoland,27498 Helgoland 5数学与计算机科学研究所,格雷夫斯瓦尔德大学,17489年,德国格里夫斯瓦尔德,6格雷夫斯瓦尔德大学,格雷夫斯特大学,17489年,德国格雷夫斯瓦尔德大学,德国格雷夫斯瓦尔德,德国,德国,Greifs Wald大学微生物学院,F Elix-Hausdorff-Straße8,17489 Greifswald,德国。电子邮件:mia.bengtsson@uni-greifsson.de编辑:[蒂尔曼·卢德斯(Tillmann Lueders)]
3。生物医学科学系自身免疫和炎症实验室(LAI),第11和BK21Plus生物医学科学项目,首尔国立大学医学院医学院,12080年12月12日,大韩民国首尔。13 4。医学院生物医学科学系和BK21plus生物医学科学14韩国国立大学医学院汉城03080,大韩民国共和国。15 5。Yonsei大学医学院内科,16朝鲜共和国尤森大学。 17 6。 宽河免疫学研究所,首尔国立大学,韩国25159,共和国18号。 19 7。 肾脏科学系首尔国立大学医院肾脏科,韩国共和国2080年20月20日。 21 8。 肾脏科学系肾脏科学系22,尤斯大学医学院,首尔03722大韩民国。 23 9。 首尔国立大学医学院缺血/低氧疾病研究所;首尔24国立大学医院生物医学研究所,首尔03080,大韩民国。 25 26†这些作者对这项工作做出了同样的贡献27 28利益冲突陈述:29作者宣布不存在利益冲突。 30 31通讯32 33 Won-woo Lee D.V.M.,博士学位34 35教授,微生物学和免疫学系 /生物医学科学系36首尔国立大学医学院37 103 Daehak-ro,Jongno-Gu,韩国首尔03080,韩国。 44 Tel) +82-2-740-8545 /电子邮件)hyk0801@hotmail.com 45 46 < / div>Yonsei大学医学院内科,16朝鲜共和国尤森大学。17 6。宽河免疫学研究所,首尔国立大学,韩国25159,共和国18号。 19 7。 肾脏科学系首尔国立大学医院肾脏科,韩国共和国2080年20月20日。 21 8。 肾脏科学系肾脏科学系22,尤斯大学医学院,首尔03722大韩民国。 23 9。 首尔国立大学医学院缺血/低氧疾病研究所;首尔24国立大学医院生物医学研究所,首尔03080,大韩民国。 25 26†这些作者对这项工作做出了同样的贡献27 28利益冲突陈述:29作者宣布不存在利益冲突。 30 31通讯32 33 Won-woo Lee D.V.M.,博士学位34 35教授,微生物学和免疫学系 /生物医学科学系36首尔国立大学医学院37 103 Daehak-ro,Jongno-Gu,韩国首尔03080,韩国。 44 Tel) +82-2-740-8545 /电子邮件)hyk0801@hotmail.com 45 46 < / div>宽河免疫学研究所,首尔国立大学,韩国25159,共和国18号。19 7。肾脏科学系首尔国立大学医院肾脏科,韩国共和国2080年20月20日。21 8。肾脏科学系肾脏科学系22,尤斯大学医学院,首尔03722大韩民国。23 9。首尔国立大学医学院缺血/低氧疾病研究所;首尔24国立大学医院生物医学研究所,首尔03080,大韩民国。25 26†这些作者对这项工作做出了同样的贡献27 28利益冲突陈述:29作者宣布不存在利益冲突。30 31通讯32 33 Won-woo Lee D.V.M.,博士学位34 35教授,微生物学和免疫学系 /生物医学科学系36首尔国立大学医学院37 103 Daehak-ro,Jongno-Gu,韩国首尔03080,韩国。44 Tel) +82-2-740-8545 /电子邮件)hyk0801@hotmail.com 45 46 < / div>44 Tel) +82-2-740-8545 /电子邮件)hyk0801@hotmail.com 45 46 < / div>38 TEL) +82-2-740-8303,传真) +82-2-743-0881 /电子邮件)wonwoolee@snu.ac.kr 39 40 Hee Young Kim Ph.D. 41首尔国立大学医学院微生物学和免疫学系研究教授43 103 Daehak-Ro,Jongno-Gu,韩国首尔03080,韩国。
气候变化已成为核心关注的问题,其影响很大,包括全球温度和海平面的升高,这归因于温室气体排放的增加。这种现象超出了环境领域,影响经济,人类健康和社会稳定。在这种背景中,酸性硫酸盐土壤带来了独特的挑战。在水口区域中发现的这些土壤具有硫化材料和极低的pH值低于4。这项研究的目的是详细回顾硫酸盐土壤在气候变化适应和缓解中的作用。酸性硫酸盐土壤会经过氧化,引起酸化并释放有毒元素,对生态系统,农业和基础设施构成威胁。将金属富含金属富含的酸性水排放到水体中,进一步加剧了问题,尤其是在不断变化的气候条件下。酸性硫酸盐土壤还可以与甲烷(CH 4),二氧化碳(CO 2)和氮氧化碳(CO 2)和氮(N 2 O)以及影响酸雨和气候转移等全球疑问。用酸性硫酸盐土壤的沿海湿地在排干时会释放碳,导致排放并影响全球变暖。研究表明,适当的湿地管理,水控制和碳固换实践可以减轻这些问题。连续监测对于观察pH值的变化,矿物质组成和微生物群落的组成至关重要。然而,研究中存在差距,例如了解酸性硫酸盐土壤的碳固换潜力,影响温室气体排放的因素以及气候变化对酸性硫酸盐土壤特性的影响。
在此,采用基于工业溶剂分馏的 LignoBoost 牛皮纸木质素 (KL) 的二元阴极界面层 (CIL) 策略来制造有机太阳能电池 (OSC)。KL 中均匀分布的苯酚部分使其能够与常用的 CIL 材料(即浴铜灵 (BCP) 和 PFN-Br)轻松形成氢键,从而产生具有可调功函数 (WF) 的二元 CIL。这项工作表明,二元 CIL 在具有大 KL 比兼容性的 OSC 中工作良好,在最先进的 OSC 中表现出与传统 CIL 相当甚至更高的效率。此外,由于 KL 阻断了 BCP 和非富勒烯受体 (NFA) 之间的反应,KL 和 BCP 的组合显著提高了 OSC 的稳定性。这项工作提供了一种简单有效的方法,通过使用木质材料实现具有更好稳定性和可持续性的高效 OSC。
摘要火星2020年的漫游车已经检查了Hagksbill Gap的Hogwallow Flats成员和Nukshak角的YORI Pass成员的富含硫酸盐的碎屑岩石。两个地层都位于Jezero Crater Western Fant上,在岩性和地层上都是相似的,并且已分配给Shenandoah地层。原位分析表明,这些是由苯硅酸盐,赤铁矿,碳硫酸盐,Fe-mg-硫酸盐,硫酸盐,可能是氯化物盐组成的细粒砂岩。硫酸盐矿物质既可以作为沉积颗粒和成岩成分特征,包括晶间水泥以及静脉和脉络液。在这里,我们描述了各种硫酸盐阶段的可能性,以根据地球上富含模拟的硫酸盐岩石的发现来保留流体和固体夹杂物中古环境条件的记录。应检查从Hogwallow Flats中收集的样品,Hageltop和Bearwallow,以及Yori Pass的Kukaklek,应检查返回地球后的这种潜在的生物签名和环境指标。
抽象硫酸盐还原细菌(SRB)是在缺氧海洋环境中降解有机物(OM)的必不可少的功能性微生物分类群。但是,关于SRB如何调节微生物群落的实验数据很少。在这里,我们通过抑制SRB来阐明其在OM退化期间对微生物群落的贡献,采用了自上而下的微生物社区管理方法。基于五个不同的孵化阶段的高度复制的缩影(n = 20),我们发现在抑制SRB(包括组成,结构,网络和社区组装过程)后,许多微生物群落特性受到影响。我们还通过正频依赖性选择发现了SRB和其他丰富的系统发育局部之间的强共存模式。Fami的相对丰度在抑制OM降解期间抑制SRB后同时抑制SRB后,同时抑制了Srixibaccaceae,Dethiosulfatibactacteraceae,prolixibacteraceae,Marinilabiliaceae和Mariniieae。SRB与共存分类单元之间的Marinilabiliales之间的密切关联是最突出的。他们在网络演替期间有助于保存的模块,是介导网络社区的基石节点,并有助于同质的生态选择。对海洋质体分离菌株的钼耐受性检验表明,抑制的SRB(不是SRB本身的抑制剂)触发了海洋质体的相对丰度的降低。这些数据支持SRB可以修改生态位以影响物种共存。我们还发现,抑制SRB导致pH值降低,这不适合大多数海洋属性菌株的生长,而在SRB抑制处理中,添加pH缓冲液(HEPE)可恢复这些细菌的pH和相对丰度。