碳是一种极具吸引力的支撑材料,因为它并不昂贵,当前的化学和热稳定性,并且通过修改其结构,更改了对确定催化性能至关重要的电子和几何特性,它具有多种用途[12-15]。此外,通过简单地燃烧(焚化)碳材料或提取,金属NP可以很容易被回收[16]。的确,碳表面结构特征强烈影响金属支持的相互作用[17-19]。Zhao等。 报道了碳纳米纤维(CNFS)结构中表面菌株的PD NP结合能的增加[20]。 PD-C相互作用在存在空缺的情况下也得到了加强,并从PD 4D轨道转移到C悬挂键[21]。 为了调整碳材料的表面是杂原子的引入,例如 o,n,b和p在其蜂窝晶格结构中。 沉积在杂种掺杂的碳表面上的 NP吸引了研究人员的注意,因为NPS结合更强并防止了烧结问题[22]。 这些催化剂的电子结构也会影响其在诸如水力氧合[23],电催化氧还原[24],光催化氧化等反应中的活性[25]。 氧作为掺杂剂会影响碳和金属纳米颗粒之间的电荷转移,实际上,大多数杂原子增强了相邻碳原子的电子密度,从而增加了从C到金属原子的反向构成[26]。Zhao等。报道了碳纳米纤维(CNFS)结构中表面菌株的PD NP结合能的增加[20]。PD-C相互作用在存在空缺的情况下也得到了加强,并从PD 4D轨道转移到C悬挂键[21]。为了调整碳材料的表面是杂原子的引入,例如o,n,b和p在其蜂窝晶格结构中。NP吸引了研究人员的注意,因为NPS结合更强并防止了烧结问题[22]。这些催化剂的电子结构也会影响其在诸如水力氧合[23],电催化氧还原[24],光催化氧化等反应中的活性[25]。氧作为掺杂剂会影响碳和金属纳米颗粒之间的电荷转移,实际上,大多数杂原子增强了相邻碳原子的电子密度,从而增加了从C到金属原子的反向构成[26]。氮和硼掺杂的C材料已受到越来越多的考虑因素,因为它们直接影响了固体的费米水平[27,28],而对其支持的PD和PD合金NP在FA分解反应中显示出有希望的活动和耐用性[29-32]。尽管PD NPS在氧气和磷掺杂碳上的沉积是甲酸脱氢反应仍然是一个挑战,但Xin等人。通过XPS揭示了磷掺杂的影响,即P掺杂会影响PD的电子特性增强其活性和催化剂稳定性[33]。
摘要:本研究提出了将介孔碳和介孔聚合物材料与延长的多孔介质结构一起作为阳离子染料分子的吸附剂的结果。两种类型的吸附剂都是合成材料。提出的研究的目的是对获得的介孔吸附剂的制备,表征和利用。使用低温氮吸附等温线,X射线衍射(XRD),小角度X射线散射(SAXS)和电位测量测量测量测量值,使用低温氮吸附等温线,X射线衍射(XRD)确定了所获得材料的物理特性,形态和多孔结构特征。使用扫描电子显微镜(SEM)成像形态和显微结构。使用X射线光电学光谱(XPS)进行了有关表面活性基团,元素组成和元素的电子状态的信息的表面化学特性,该化学特征提供了有关表面活性基团,元素组成和元素的电子状态。使用三种选定的阳离子染料(甲苯蓝色)和三甲烷(玛雀绿色和晶体紫)的平衡和动力学吸附实验确定介孔材料的吸附特性。分析了使用材料的纳米结构和表面特性的吸附能力。将广义的langmuir方程应用于吸附等温度数据的分析。染料吸附的动力学与吸附剂的结构特性密切相关。吸附研究表明,与聚合物材料相比,碳材料具有更高的吸附能力,例如0.88–1.01 mmol/g和0.33–0.44 mmol/g,与聚合物材料相比,碳材料的吸附能力较高(0.038-0.0.044 mmol/g和0.044 mmol/g和0.038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038- –0-038- – 0。使用各种方程式分析动力学数据:一阶(敌人),二阶(SOE),混合1,2-阶(MOE),多指数(M-Exp)和分形类MOE(F-MOE)(F-MOE)。
特邀贡献 研讨会“从表面到设备:纳米结构氧化物和碳材料的新视角”——I-Lamp(先进材料物理跨学科实验室),布雷西亚(意大利),2022 年 12 月 12 日“基于功能化石墨烯的电子鼻用于 NO 2 鉴别——特邀演讲。 MNE2022 和 Eurosensors 国际会议,鲁汶(比利时),2022 年 9 月 19-23 日“基于纳米结构碳的呼吸组学电子鼻”——特邀演讲。 研讨会“纳米结构碳材料和设备的趋势”,线上活动,2022 年 1 月 28 日“基于纳米结构碳的呼吸组学气体传感器阵列:从 CNT 到石墨烯”——特邀演讲。研讨会“大学里的博士生”,文学与艺术学院,线上活动,2020 年 11 月 18 日“物理学与医学之间:电子鼻如何嗅出疾病”——受邀演讲。第 58 届 AIF 全国代表大会(意大利物理学教授协会),布雷西亚(意大利),2019 年 10 月 16 日至 19 日“物理学与医学之间:嗅出疾病的电子鼻”——受邀演讲。研讨会“从表面到设备:纳米材料之旅”,布雷西亚大学(意大利),2019 年 4 月 11 日“使用碳纳米管的呼吸组学”——受邀演讲。会议精选贡献 Giornata Italiana dell'analisi dell'espirato,比萨(意大利),2023 年 1 月 10 日“基于碳纳米结构的电子呼吸组学”——口头报告。 石墨烯周 2022 - 国际会议,慕尼黑(德国),2022 年 9 月 5 日至 9 日“通过用 2,5-二芳基四唑功能化的石墨烯基传感器阵列识别干扰气体中的氨气”——海报展示
生物炭是从生物质热解获得的富含碳材料。生物炭,并越来越被认为是通过在土壤和产品中存储热源碳去除二氧化碳的技术。生物炭系统充分实施后,除了其温室气体减轻二氧化碳去除和减少碳化物的影响外,还可以产生许多积极的社会和环境影响(Azzi等2021年,CelanderOchSöderqvist,2021年,2021年)。话虽如此,我们注意到,全球商业生物炭项目的迅速增长在很大程度上是由于去除二氧化碳的潜力所驱动的。生物炭储存的关注点突显了需要提高生物炭碳储存周围的理解和知识传播的需求。传播此类知识是本报告的总体目的。
已审查了不同电磁屏蔽材料的设计和制造方法的最新技术。由于电信技术开发产生的电磁污染,该主题已成为主流研究领域。审查以吸收性材料为中心,并显示了如何通过几何,组成,形态和填充粒子含量来定制此类复合材料的吸收特性的一般概述。尽管解释了不同类型的材料,但文本主要集中在石墨烯和碳纳米管等碳材料上。通过这种方式,讨论了导电填充剂在不同聚合物矩阵中的重要性。此外,还提出了一项关于新的复杂体系结构(例如基于泡沫的材料)的广泛研究。最后,提到了碳填充剂与其他成分(例如金属纳米颗粒)的组合。在所有这些研究中,讨论了复合材料作为吸收性或反射电磁辐射的效率。
1石油与化学工业的生物质基于生物质的材料,化学工程学院,化学与药房,化学与环境工程学院,武汉理工学院,武汉430205,中国; Little_ben2002@163.com(X.Y。); Hezhenwork@126.com(Z.H.); 17371087162@163.com(L.J.); 18154351008@163.com(H.C.)2材料与环境工程系,成都技术大学,成都611730,中国3湖转换式煤炭转换和新碳材料的主要实验室,化学与化学工程学院,武汉科学与技术大学,乌汉尼大学430081,中国武汉大学,武汉大学430081,中国; wuling2018@wust.edu.cn 4高级材料教育部材料科学与工程学院的主要实验室,中国北京100084,北京大学; zhhuang@tsinghua.edu.cn *通信:lqlxp10@163.com(q.l.); wangmx14@wit.edu.cn(M.W。);电话。: +86-27-87195680(M.W。)
建筑规范部 (BCD) 与两家咨询机构 RMI(前身为落基山研究所)和新建筑研究所 (NBI) 签订了合同,以提供关于建筑对气候影响的背景研究。由此产生的研究题为《关于在州建筑规范中使用低碳材料以及减少建筑材料温室气体排放的其他方法的调查结果和建议》(简称为 RMI/NBI 的配套技术报告),并在本报告中引用。1 该研究与本报告一起提交,包含大量可访问且值得审查的技术信息。本报告以该研究以及 BCD 的政策和技术服务 (PTS) 的贡献以及与俄勒冈州环境质量部 (DEQ) 的磋商为基础,旨在为俄勒冈州立法机构的政策制定者提供建议和教育。
这是以下文章的同行评审版本:用于 ORR、HER 和 OER 的 C1N1 衍生碳材料中金属纳米团簇和单原子的先进设计,最终形式已在 Advanced Functional Materials 上发表:2300405 (2023),https://doi.org/10.1002/adfm.202300405。本文可用于非商业用途,符合 Wiley 自存档版本使用条款和条件。未经 Wiley 明确许可或适用法律下的法定权利,不得对本文进行增强、丰富或以其他方式转化为衍生作品。不得删除、隐藏或修改版权声明。文章必须链接到 Wiley 在 Wiley Online Library 上的记录版本,并且禁止第三方从 Wiley Online Library 以外的平台、服务和网站嵌入、框架或以其他方式提供文章或其页面。
随着煤炭和石油等化石燃料的过度使用和剥削,当代世界文明已经面临着越来越多的重要能源问题和环境退化。1,2因此,世界上大多数国家都制定了双碳政策,这些政策使得创造和利用绿色,可再生资源以解决上述问题,以解决维持迅速的经济发展。3最近对环境废物产生活化的多孔碳及其对各种应用的使用的研究引起了很多科学的关注。4同时,创建具有大规模应用的新碳材料必须遵守工业需求,例如环境可持续性,一种不充分的或简单的生产方法,以及披露增强甚至新颖的期望功能。5,6除了它们的优质化学和热稳定性外,这些激活或多孔碳的高表面积,可变孔隙率以及孔径尤其引起了人们的兴趣。7这些条件是