为本临时决定之目的,基于最佳可用信息,EPA 将“显著较低”解释为与类似材料/产品相比,全球变暖潜能值 (GWP) 处于表现最佳的 20%(前 20%,或体现温室气体排放量最低的 20%)。如果项目所在地没有处于前 20% 的材料/产品,则根据本临时决定,如果材料/产品的 GWP 处于前 40%(体现温室气体排放量最低的 40%),则该材料/产品有资格根据 IRA 第 60503 或 60506 条获得资助。如果项目所在地没有处于前 40% 的材料/产品,则根据本临时决定,如果材料/产品的 GWP 优于估计的行业平均值,则该材料/产品有资格根据 IRA 第 60503 或 60506 条获得资助。此外,合格材料/产品的供应商必须报告供应工厂的 ENERGY STAR 能源性能得分 (EPS)(如有能源性能指标)。预计这种基于环境产品声明 (EPD) 的方法和“大幅降低温室气体排放”的定义将随着时间的推移通过利益相关者的意见进行重新评估和严格审查。一些行业范围的 EPD 对对材料/产品的 GWP 影响最大的背景数据集的时间、技术和地理代表性缺乏透明度。这需要更好地理解。但是,使用行业范围的 EPD 或现有的特定产品 EPD 群体作为确定阈值的来源符合以下原则:
北京理工大学光学与光子学院,北京,100081,中国 电子邮件:yuanyue000418@163.com 收稿日期:2022 年 5 月 1 日/接受日期:2022 年 6 月 1 日/发表日期:2022 年 7 月 4 日 本文重点研究了碳和氮掺杂碳作为超级电容电极材料的制备、结构和电化学表征。电极材料是通过粉碎、氧化预处理和键合、碳化和活化制备的,聚合物材料加工成碳基材料。为了制备碳气凝胶电极材料,采用富氮前驱体方法通过氮掺杂来改变获得的碳基底材料。 SEM 和 XRD 对形貌和晶体结构进行分析表明,掺杂样品中引入了氮,碳电极表面覆盖着云状团簇和不均匀的聚集碳颗粒,而 N 掺杂碳样品具有海绵结构,其中交织着类似石墨的薄片,具有更高的粗糙度和孔隙率,以及更大的表面积。使用循环伏安法 (CV) 和恒电流充放电 (GCD) 循环对制备的碳基材料进行电化学研究表明,N 掺杂碳比对照样品具有更高的电化学电容性能,以及理想的快速充放电性能和功率器件的高功率容量。在 1 A/g 的电流密度下,碳和 N 掺杂碳的比电容分别为 13.56 和 192.12 F/g,这意味着 N 掺杂样品的比电容比未掺杂材料提高了 14 倍。经过 10000 次循环后,N 掺杂碳的循环稳定性显示出几乎 108% 的电容保持率。根据 N 掺杂碳超级电容电极性能与早期关于超级电容器中多孔碳材料的报道的比较,N 掺杂碳超级电容电极的比电容、功率和能量密度与其他报道的 N 掺杂多孔碳结构的值相当或更好。这些测试表明,使用所述方法生成的氮掺杂碳电极材料具有较低的内阻,并且可以在超级电容器中保持良好的电化学性能。关键词:氮掺杂碳;电化学性能;富氮前体;超级电容电极材料
摘要:当前基于硅的电子技术正在接近其物理和科学极限。碳基器件对下一代电子产品具有众多优势(例如,速度快、功耗低和工艺简单),当这些优势与碳元素多功能同素异形体的独特性质相结合时,正在引发一场电子革命。碳电子器件正通过新的制备方法和复杂的设计取得长足进步。从这个角度来看,本文回顾了不同尺寸的代表,例如碳纳米管、石墨烯、块体金刚石及其非凡的性能。本文还强调了相关的最先进器件和复合混合全碳结构,以揭示它们在电子领域的潜力。商业化生产的进步提高了成本效率、材料质量和器件设计,加速了碳材料的应用前景。
摘要:这篇全面的评论文章总结了从多苯并嗪获得的高级碳质材料的关键特性和应用。鉴定在碳化过程中产生的几种热降解产物,允许碳化的几种不同的机制(竞争性和独立机制),同时还确定了苯唑阵的热稳定性。多苯第二嗪衍生的碳材料的电化学性能,指出伪电容性和电荷稳定性特别高,这将使苯佐昔唑适用于电极。苯唑嗪的碳材料也具有高度的用途,可以通过多种方式合成和制备,包括泡沫,泡沫,纳米纤维,纳米球,纳米球和凝胶凝胶,其中一些提供了独特的特性。特殊特性的一个例子是,材料不仅可以作为气凝胶和凝聚凝胶作为多孔,而且可以作为具有高度量身定制孔隙率的纳米纤维,通过各种制备技术控制,包括但不限于使用表面活性剂和二氧化硅纳米粒子。除了高可调制的孔隙率外,苯佐昔嗪还具有多种特性,可使它们适用于碳化形式的众多应用,包括电极,电池,气体吸附剂,催化剂,屏蔽材料和浓烈的涂层等。极端的热和电稳定性还允许苯唑嗪在更恶劣的条件下(例如在航空航天应用中)使用。
通过不断改进电极材料和电解质的性能来提升超级电容器的性能。12在电极材料方面,常见的电极材料有(i)碳、(ii)金属氧化物和(iii)导电聚合物。13,14与金属氧化物和导电聚合物相比,碳材料具有比表面积大、中/微孔率高、无毒、化学稳定性高、导电性好,能加速电解质离子的扩散,15,16因此碳基材料的研究备受关注。常见的碳基材料包括生物质、碳纤维、炭黑、碳气凝胶、碳纳米管、石墨烯等。17对于碳纤维、石墨烯、碳气凝胶、碳纳米管等,由于其成本高、碳前驱体不可再生、合成工艺复杂,无法用于商业化。 18 – 20 而生物质基碳恰好可以弥补这些不足。生物质具有天然结构,具有天然多级孔隙,这使得生物质基碳的合成比其他碳材料更容易、更安全、更便宜、更绿色。此外,生物质资源丰富,可再生。21 – 23 基于以上事实,可以推断生物质是应用于超级电容器的电极材料的良好前驱体。24 目前,多种生物质已被用作超级电容器碳材料的前驱体,例如竹子、头发、小麦、甘蔗渣、橘皮、丝绸、猪骨等。11,21,25 虽然大多数生物质基碳具有良好的电化学性能,但它们仍存在区域分布有限、生产、收集和运输困难等缺点,这可能会限制其进一步的工业化。25 – 28
摘要:使用带有大孔体积的导电单壁3D石墨烯作为阴极支撑材料的导电单壁3D石墨烯制备了有效的全溶剂李 - S电池的耐用纳米结构阴极材料。在活性材料的高载荷(50-60 wt%)下,在充电/放电过程中使用传统的阴极支撑材料观察了微观相位分离,但这通过将硫硫化到弹性和灵感的Nanoporof depline的中孔中的硫化抑制作用来抑制,并具有5.3 ml g的大孔。因此,在固体电解质,绝缘硫和导电碳中实现了耐用的三相接触。因此,在353 K的严格运行条件下,组装全稳态电池的电化学性能显着改善和可行,并提高了循环稳定性,并且循环稳定性以及最高的特定能力,最高的特定能力为716 mA H每克Cath cathe(4.6 Ma H cm-h cm-h cm-0.2 c can in 50%均达到50%的固定量(0.2 c)。关键字:纳米多孔碳,3D石墨烯,锂 - 硫电池,所有固定状态电池,大孔体积
基于碳材料的光学传感器 - QU antum BE lgium 开发用于太空应用的量子金刚石磁力仪
石墨材料是重要的工业产品。电池和电子计算机行业的快速开发激励了对石墨材料的巨大需求。然而,如今,石墨材料是通过在高于2500℃的温度下通过热处理化石油或煤炭衍生的焦炭来商业生产的。基于化石的原料和能源密集型生产过程均与可持续发展的概念背道而驰。本论文提出了可持续的低温催化石墨化过程,通过使用商业生物质热解生物炭作为原料,生产具有高度有序结晶度的石墨材料。硝酸铁作为石墨化催化剂。研究了石墨温度和铁载量对生产碳产物的性质的影响。产生的石墨材料。结果表明,随着石墨化温度和铁载量的增加,产物的平均石墨晶体大小和产品的石墨化程度增加。但是,铁载量的增加降低了酸洗涤过程的催化剂去除效率。当石墨温度高于1100℃,铁负荷量高于11.2 wt。%时,生产的石墨材料的结晶度优于商业石墨的结晶度。具有最佳结晶度的石墨材料,该材料在1300℃的温度下产生,铁负荷为33.6 wt。%,其结晶度非常接近纯石墨。