识别和储层相的表征是划定用于碳氢化合物勘探的储层的碳氢化合物区域的主要因素。地球物理日志是在钻孔附近测量的储层相的物理参数,在储层相的解释中起着至关重要的作用。本研究涉及使用地球物理原木上的机器学习(ML)技术在坎贝盆地中岩石BEL的岩性的识别。机器学习的监督技术,例如支持向量机(SVM),ARTI B CIAL神经网络(ANN)和K-Nearest邻居(KNN),用作非线性地球体物理原木岩性学的识别的非线性分类。使用网格搜索交叉验证(CV)方法优化了ML模型的超参数,如ConfusionMatrix评估,auctreceiver操作特性曲线(AUC),精度,召回和F1分数对促进性的促进症状效果。ML模型使用了两个井的地球物理参数,其中有四个已知的杰出岩性(class-a,class-b,class-c和class-c和class-c和class-c和class-c和class-class-c和class-class-class-c和class-class-class)。分别从混淆矩阵中分别为KNN,SVM和ANN的每个岩性的优化和训练的模型,分别以85.4%,87.0和88.9%的形式显示了对真实值的总体正确预测。因此,每个模型从评估参数中的准确性表明,对不同ML模型的组合分析选择优化的ML模型,以更好地实现和验证,以更好地实现和建模岩性。除此之外,接收器手术特征(ROC)还表明,每种岩性的曲线下的整体面积大于90%,其他评估参数(例如精度,回忆和F1得分)的准确性大于84%,除了SVM和ANN类C类D类和Ans类D类案例外。
1 引言随着全球经济的快速发展,人们对资源的需求急剧增加,浅部矿产资源严重匮乏,矿产资源逐渐向深部开发迈进,据统计,我国部分矿山开采深度已超过1 km[1,2],深部资源开发将成为常态[3]。深部岩石爆破对施工环境的影响也引起了人们的重视,特别是爆破地震波冲击引起的爆破震动,往往会对周边环境造成影响[4–7]。根据我国《爆破安全规程》[8],爆破施工作业应在安全允许距离外进行,安全允许距离是根据爆破振动速度和地层条件确定的。随着现代化进程的加快,提高土地利用率尤为重要,确定正确的安全允许距离不仅有利于周边环境的安全
由于地面条件恶劣,软质海洋粘土沉积物下为坚硬的基岩,斯堪的纳维亚半岛的许多地下项目都面临着隧道进水沉降风险的挑战。这些充满粘土的洼地中的孔隙压力降低会对附近的建筑物造成损坏,这是奥斯陆基础设施建设的主要风险之一。本文介绍了奥斯陆地区 44 条隧道的大量数据库,这些隧道建于 1975 年至 2020 年之间。数据包括开挖前注浆后测得的进水量、孔隙压力降低、开挖前注浆工作量和地质参数。对数据进行分析以确定关键参数之间的趋势和关系,例如给定进水率的预期孔隙压力降低和获得给定注浆区水力传导率所需的注浆工作量。分析表明,在未来的项目中,有必要将重点放在孔隙压力监测上,而不是进水,以降低不可接受的孔隙压力降低的风险。提出了如何优化开挖前灌浆的监测和跟踪以确保满足所需的防水性的建议。
如今,隧道掘进机 (TBM) 因其开挖速度高、对围岩影响小、安全标准高而在世界各地被广泛使用。岩体可钻孔性被视为评估 TBM 在节理岩体中性能的主要参数之一。可钻孔性是反映岩体和切削刀具之间相互作用的参数。本文旨在利用为利用从伊朗克尔曼输水隧道项目收集的数据(TBM 操作和地质参数)而准备的数据库来说明节理几何参数对可钻孔性的影响。为此,首先研究了影响可钻孔性的节理参数(方向、间距、持久性)。然后,使用总破裂因子(Bruland)和持久性分类来研究所有三个参数对可钻孔性的影响。结果表明,通过提高节理持久性也可以提高可钻孔性。此外,随着节理持久性的增加,破裂因子(K s-total )对可钻性的影响也随之增大。本文还根据对数据库的分析,提出了一个新参数,称为“岩石节理指数”(RJI)。基于 RJI 估算的可钻性值与实际钻进速度具有很好的一致性。
与当前的技术状态相比,美国能源部(DOE)提议向普渡大学提供联邦资金,以开发具有增强稳定性和电子特性的太阳能钙钛矿细胞。普渡大学将专注于将半导体配体(即与金属原子结合的分子)整合到细胞中。与技术的当前状态相比,配体将覆盖太阳能电池并提高设备内能量交换的能量转换效率和控制能量交换的方面,从而提高稳定性和能源效率。与项目相关的活动包括数据分析,计算机建模,概念设计工作,材料合成,表征,太阳能电池/微型模块制造和性能测试。
迄今为止,尚无证据表明锂辉石有商业化生产前景。锂化学品分两个阶段从硬岩源中生产出来:i. 通过浮选和/或重介质分离将锂辉石选出 5 – 6% 的 Li 2 O 精矿或将透锂长石选出 3 – 4%。锂云母通过浮选进行选矿,锂辉石通过磁选进行选矿。ii. 在接下来的湿法冶金步骤中,精矿在 ~ 1000 – 1100 摄氏度下煅烧以产生更具反应性的晶体形式,然后在高温下用浓硫酸浸出,得到硫酸锂。通过添加苏打灰(可去除镁杂质)可将其转化为碳酸盐,然后通过添加石灰将其转化为氢氧化物(通常是首选方案)。锂云母和锌云母含有氟,在煅烧过程中会被释放,因此需要使用洗涤器来收集氟,防止其逸出到大气中。Lepidico 是一家在纳米比亚拥有锂矿开采前景的澳大利亚公司,该公司开发了一种提炼锂云母的程序,其中包括泡沫浮选和磁选,但不需要煅烧阶段。
在这项研究中,使用二维图像用于使用两步过程(8,14)来表征谷物和孔的形态。在第一步中,捕获图像。在第二步中,使用图像分析软件扫描了此类特征的面积和平均孔接触角,该软件能够准确测量孔隙和谷物空间的几个形态参数,如图1所示。本研究利用面积测量和接触角作为所有分析的标准参数。形态特征是根据面积和接触角度计算的,这将信息准确性的水平分为两个维度。该信息被认为是“大数据”,并分析了以找到可以减少成本和时间的答案。
我们利用锡罗斯岛(希腊基克拉泽斯群岛)出露的俯冲相关岩石的结构和微观结构观测结果,对深俯冲界面的长度尺度和异质性类型提供约束,可能对间歇性震颤和慢滑移有影响。我们选择了三个锡罗斯地区,它们代表了俯冲界面剪切带内不同的海洋原岩和变形条件,包括:(1)海洋地壳向榴辉岩相的顺向俯冲;(2)海洋地壳从榴辉岩经蓝片岩-绿片岩相折返;(3)混合镁铁质地壳和沉积物从榴辉岩经蓝片岩-绿片岩相折返。这三个地方都保留了流变学异质性,反映了俯冲原岩中原始岩性、地球化学和/或结构变化的变质,并以粘性基质内的脆性荚状物和透镜状物的形式出现。微观结构观察表明,基质岩性(蓝片岩和富含石英的变质沉积物)由分布式幂律粘性流变形,并由多个矿物相中的位错蠕变所适应。我们估计整体剪切带粘度范围从~10 18 到 10 20 Pa-s,取决于沉积物与(部分榴辉岩化的)海洋地壳的相对比例。基质内的榴辉岩和粗粒蓝片岩异质性保留了多代扩张剪切断裂
Arizona Lithium Limited (ASX: AZL, AZLO, AZLOA, OTC: AZLAF) (“Arizona Lithium”, “AZL” or “the Company”) , a company focused on the sustainable development of two large lithium development projects in North America, the Big Sandy Lithium Project (“ Big Sandy ”) and the Prairie Lithium Project (“ Prairie ”), is pleased to announce it has从草原项目中生产了电池级碳酸盐,该项目已由盐厂独立验证。碳酸锂是由2023年11月至2024年2月在草原项目上运营的ILIAD飞行员的DLE洗脱液生产的。dle洗脱液被送往加拿大温哥华的盐厂设施,在那里它被转换为碳酸盐级电池级。图1显示了产生的电池级碳酸锂的样品。图2显示了过程流程图,以便从草原项目到电池级碳酸盐。图3说明了盐水测试设施中的碳酸盐和清洗设备。
使用大环氧化物氧化物和CO 2合成了三个分子量的分子量碳酸盐),并使用大环苯二氧化二层二层型催化剂合成,并通过常规纯化程序纯化。与使用Salen Metal催化剂合成的分子量相似的聚(环己烯碳酸盐)相比,观察到大约100℃的热稳定性降低。这种降低源于二脂催化剂的痕迹,该催化剂能够促进聚(环己烯碳酸苯甲酸酯)对CO 2和氧化氧化物的解聚,与常规的逆向机制相比,该机制可导致环境碳酸盐。可以通过更改残留的二脂催化剂的量或包含具有官能基团的物种来精确调整降解的发作,从而可以减少催化中心的可用性。因此,通过改变催化剂和周围化学环境的浓度来控制聚(环己烯碳酸盐)的热稳定性的可能性为将这些聚合物用作高级应用中利益的材料中的组成部分铺平了道路。