简介 直接键合是一种在室温下自发的电介质-电介质键合,通过低温批量退火工艺(200°C – 300°C)实现金属-金属连接(此处为 Cu-Cu 键合)。因此,直接键合工艺对于异质集成具有吸引力,并且与使用焊料的微凸块键合相比具有多种优势 [1, 2]。此外,对于这种无金属帽键合工艺,互连密度和互连缩放限制较少。该技术可以消除电气短路的风险,因为键合过程中不会有焊料从微凸块中挤出,这对于细间距应用至关重要。通过混合键合成功开发晶圆-晶圆键合,导致该技术迅速引入大批量制造 [3]。混合键合互连在 Cu/Cu 界面处表现出出色的可靠性和稳定的微观结构,这已在最近的研究中发表。[4, 5, 6]
2 2401 Brewer Driver,Rolla,MO 65401,美国 * 通讯作者的电子邮件:vikram.turkani@novacentrix.com 摘要 临时键合和脱键合 (TB/DB) 工艺已成为晶圆级封装技术中很有前途的解决方案。这些工艺为晶圆减薄和随后的背面处理提供了途径,这对于使用 3D 硅通孔 (TSV) 和扇出晶圆级封装等技术实现异质集成至关重要。这些对于整体设备小型化和提高性能至关重要。在本文中,介绍了一种新颖的光子脱键合 (PDB) 方法和相应的键合材料。PDB 通过克服与传统脱键合方法相关的许多缺点来增强 TB/DB 工艺。PDB 使用来自闪光灯的脉冲宽带光 (200 nm – 1100 nm) 来脱键合临时键合的晶圆对与玻璃作为载体晶圆。这些闪光灯在短时间间隔(~100 µs)内产生高强度光脉冲(高达 45 kW/cm 2 )以促进脱粘。通过成功将减薄(<70 μm)硅晶圆从玻璃载体上脱粘,证明了 PDB 在 TB/DB 工艺中的可行性。对减薄晶圆和载体的脱粘后清洁进行了评估。通过每个闪光灯提供均匀、大面积照明(75 mm x 150 mm),并且能够串联灯以增加 PDB 工具的照明面积,PDB 方法为晶圆级和面板级封装技术提供了一种高通量、低成本的脱粘解决方案。关键词光子剥离、闪光灯、临时键合和脱粘、临时键合材料、晶圆级封装。
电线粘结仍然是微电子包装中的主要互连技术。在过去的三年中,显而易见的是,从AU和Cu线粘合到Cu键合的显着趋势变得显而易见。这是由于一般努力降低诸如AU之类的原材料的制造成本和价格上涨所致。尽管在最近几十年中已经进行了许多研究,但大多数都集中在Au Ball/楔形上。这项研究的结果表明,键合参数,键合质量和可靠性密切相互联系。然而,与AU相比,Cu的不同材料特性(例如对氧化和硬度的依从性)意味着这些见解不能直接传递到Cu键合过程中。因此,有必要进一步研究。本文讨论了在各种键合参数下的键合界面形成的研究。Cu线在AlsICU0.5金属化上键合,并进行了键合参数优化以识别有用的参数组合。根据这种优化,使用低,中和高的美国功率和粘合力的参数组合组装不同的样品。通过剪切测试和HNO 3蚀刻进行了界面分析。在200 c退火168 h和1000 h的设备的横截面上分析了金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。 粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。使用EDX分析退火样品的金属间相形成,并根据相形成动力学进行解释。确定了三个主要的金属间相。2010 Elsevier Ltd.保留所有权利。
由密切包装配体形成的非孔产物。用于比较,金属 - 具有协调键和共价键的有机框架(MOF)和共价有机框架(COF),可以基于网状化学的合理设计和合成。18,19因此,它需要一种新的合成方法来控制HOF的形成并丰富它们的结构多样性。模板合成一直是构建多孔材料(例如MOF和COF)的重要策略。例如,通过合成后的金属化/脱位,20,21金属交换,22 - 24或配体交换25 - 28已被广泛用于获得具有与MOF-emplate相同结构/拓扑的靶向功能MOF。这些模板合成利用了可逆的协调键,这些键可以在合成后的修改过程中破坏和改革。可逆协调键也已用于模板COFS 29和多孔聚合物的合成。30 - 32 Yaghi及其同事证明了一个代表性的例子,这些示例使用了Cu I-苯噻吩会协调部分的可逆形成/断裂来构建具有编织结构的COF。29铜中心在COF结构内的编织上是独立的,并用作将螺纹带入编织模式的模板,而不是更常见的平行排列。可以在不破坏COF结构的情况下去除弱的cu i。这些作品激发了我们使用协调债券指导HOF的组装。要实现协调键指导的HOF合成的设计,基于弱协调键的MOF将为
‧‧‧jx Nippon石油和天然气勘探公公全球最大规模燃煤电厂营运的,2017年〜2021年累计捕捉380万吨co 2,皆用于eor
Product CF Report on low-carbon agricultural and rural development in China (2023) 中国农业农村低 碳发展报告
4。为什么在大气中与水蒸气有关的科学家不是气候变化的原因?水蒸气是大气中最丰富的温室气体。但是,在整个历史上,水蒸气水平一直保持相对恒定,因此似乎增加的水蒸气是导致气候变化的原因。