读取或从光盘上写入数据。有些驱动器只能从光盘中读取,但最近的驱动器通常是读者和录音机,也称为燃烧器或作家。紧凑型光盘,DVD和蓝光光盘是光学介质的常见类型,可以通过此类驱动器读取和记录。光驱动器是通用名称;驱动器通常被描述为“ CD”“ DVD”或“ Bluray”,其次是“驱动器”,“作家”等。光学介质的三种主要类型:CD,DVD和Blu-ray Disc。CD最多可以存储700兆字节(MB)的数据,DVD最多可以存储8.4 GB的数据。Blu-ray Discs是最新类型的光学介质,最多可以存储50 GB的数据。此存储容量比软盘存储介质(一种磁介质)的明显优势,该磁盘的容量仅为1.44 MB。
众所周知,由于磁性元件缺乏可集成性,因此在设计集成电路时应避免使用磁性元件。磁性元件制造领域的新发展是使用单片制造技术(而不是当今的批量方法)集成和小型化的有前途的器件。这种发展的驱动力在于某些受益于或依赖于使用铁磁介质的电感或磁耦合器件的应用。此类应用的示例包括调谐射频谐振器、匹配网络、直流-直流功率转换和调节、网络滤波器和线路隔离器/耦合器。新兴应用需要更高的移动性、更低的功耗以及更小的元件和系统尺寸,这已成为高度集成系统和/或子系统发展的驱动力。为了顺应这些趋势,必须能够将高质量的磁性器件(即电感器和变压器)与其运行的系统集成在一起,而不是作为独立的分立器件。它们的离散特性不仅阻碍了进一步小型化,而且其特性也阻碍了性能(例如速度)的提高。单片磁性设备的主要特点包括:
摘要:超导磁性分离器技术利用了强烈的磁场的力量来区分磁性和非磁性材料,证明包括采矿,回收和水处理在内的各个部门都必不可少。本研究旨在通过全面的建模和仿真来阐明不同磁收集介质对超导磁分离器内磁场分布的影响。采用Infolytica磁铁软件,我们模拟了JS-6-102 Pilot尺寸超导磁分离器中的磁场分布,评估没有磁介质的条件,并且具有不同的磁性矩阵,包括网格和杆类型。我们的模拟表明,磁矩阵的包含明显改变了磁场的分布,从而增强了磁感应强度和磁场均匀性的变化。具体来说,我们发现较小的网状尺寸会产生更均匀的磁场,而较大的杆直径会引起更大的磁场失真。这些见解是优化超导磁分离系统的设计和操作效率的关键。
气体聚集是一种众所周知的现象,在自然界中通常出现在温度降低的情况下,例如云、雾或霾的形成。大气气体的原子和分子形成非常小的聚集体,称为团簇或纳米颗粒。几十年前,气相聚集原理成为在实验室条件下合成原子和分子团簇用于特定研究应用的新技术的基础[1,2]。从那时起,这项技术逐渐发展成为一种广泛使用的方法,并在20世纪90年代获得了显著的推动力,此后由于与快速发展的纳米科学和纳米技术领域的高度相关性[3-6]。目前市场上可买到的不同类型的气体聚集源与其他物理和化学纳米级合成方法相比具有许多优势,可以调整纳米颗粒参数并将其组装成功能系统,这在各种研究和工业部门中都有很高的需求[7,8]。近年来,人们开展了大量研究以改进气体聚集源以及相关团簇光束操纵系统的性能和能力[9,10]。许多研究探讨了团簇聚集的物理原理和影响其形成的关键参数,从而为控制团簇的组成、形状、大小和结构铺平了道路[11,12]。大量研究致力于将气相合成纳米粒子用作功能纳米材料和光学、催化、传感和成像、生物技术和其他领域的器件的构建块[13]。我们编写这期特刊的目的是讨论气相聚集技术的最新进展、纳米粒子合成和功能化的趋势,以及团簇光束在制备功能纳米材料或纳米级表面改性中的应用。总体而言,本书为读者提供了该领域的各种主题:从核@壳纳米粒子的形成技术到纳米粒子组装基质的应用和纳米尺度的表面改性。这种多样性表明人们对纳米粒子气体聚集和团簇束领域的兴趣是多方面的。本书以 Popok 和 Kyli án [ 14 ] 的综述开始,该综述分析了使用气相聚集法合成纳米材料的最新技术,并概述了主要应用领域,如催化、磁介质的形成、纳米粒子用于传感和检测,以及功能涂层和纳米复合材料的生产。本文从应用的角度很好地概述了不同的团簇物质相互作用机制和团簇束方法的优势。它还解决了集群技术分支的巨大发展与工业层面集群资源的稀疏使用之间的矛盾局面。Skotadis 等人的第二篇论文 [ 15 ] 也是一篇关于气相纳米粒子合成的综述,但特别关注传感技术中的应用。本文概述了基于电导率变化的传感器基质的工作原理