基于定制有源像素传感器 (APS) 的相机已设计、特性化并经过太空应用认证。该相机针对其在太阳磁力仪中的应用进行了优化,旨在用于太阳轨道器任务中的偏振和日震成像仪 (PHI)。设计的相机的控制电子设备在现场可编程门阵列 (FPGA) 中实现。对控制电子设备进行优化,可在高读出速度和温度梯度等可变操作条件下最大限度地降低相机噪声。此外,控制模块可保护图像传感器免受空间辐射引起的单粒子效应 (SEE) 的影响。图像传感器和相机的特性化结果揭示了它们的电气和光电性能。此外,三次辐射活动已经允许研究定制探测器对电离剂量、非电离剂量和单事件效应的耐受性。辐射,特别是非电离剂量,会显著增加传感器的暗电流,并对其他参数产生较小的影响。辐照后测试表明,如果保证适当的飞行退火和工作温度,这些影响可以部分克服,因此不会危及科学成果。对探测器实施的防 SEE 保护成功避免了相机的永久性功能故障。应用分析显示了相机特性及其与其他仪器单元的组合操作如何影响 PHI 磁力仪的偏振和计时性能。该分析既定义了相机的最低要求,又制定了联合操作偏振、光谱和成像模块的最佳策略。该仪器要求相机具有 2048 × 2048 像素的分辨率、快速读出和较大的满阱容量。反过来,任务的具有挑战性的轨道对所有机载子系统施加了恶劣的热和辐射环境。相机电子设备和 APS 传感器已经超越了这些得出的最低性能和操作条件。太阳轨道器是一项太空任务,将研究太阳、日光层以及它们之间的关系。该航天器将比以往任何太空任务更接近太阳。作为太阳轨道器有效载荷的一部分,PHI 磁力仪将测量太阳可见表面(即光球层)的磁场和气体流速。这项工作的大部分内容,包括需求研究、相机设计解决方案和图像传感器的辐射评估,都可以应用于未来的太阳观测站或直接用于其他太空科学相机。
第一种定位技术基于一个或多个磁力仪测量磁性物体的感应磁场。这些测量取决于物体的位置和磁特征,可以用从电磁理论推导出的模型来描述。对于这项技术,已经分析了两种应用。第一个应用是交通监控,这需要很高的稳健定位系统。通过在车道附近部署一个或多个磁力仪,可以检测和分类车辆。这些系统可用于安全目的,例如检测高速公路上的逆行驾驶员,也可用于统计目的,通过监测交通流量。第二种应用是室内定位,其中移动磁力仪测量室内环境中磁结构感应的静止磁场。在本文中,提出并评估了此类磁环境的模型。