在过去几十年中,对磁化等离子体的分离区域中具有高浓度的磁能的电流板形成,并且通过磁重新连接快速释放的能量的可能性。根据现代概念,当前板的动力学为各种恒星的变化型现象提供了基础,包括其他恒星上的太阳耀斑和耀斑,地球和其他行星磁层中的实体,以及在toka mak等离子体中的破坏不稳定性[1-5]。与理论研究一起,在专用的实验室实验中研究了电流板和磁重新连接的动力学。这些实验除其他因素外,还可以提供非平稳的天体物理现象的实验室建模[6-12]。实验室实验是在高度控制和可恢复的条件下进行的,并使用现代血浆诊断方法,这允许等离子体动力学与电流板中磁场,电流和电子动力学的演变相关联[11-16]。可以在相对较宽的范围内建立实验实验中电流板的初始条件,因此提供了不同结构的当前表,就像在自然条件下的当前板一样(例如,在地球的磁层中)。特别是,通过更改血浆中离子的质量,我们可以在板的相对厚度和霍尔效应在等离子体动力学中的作用发生变化[14,15]。在具有重离子的血浆中,我们获得了具有离子惯性长度的厚度的“薄”次离子电流板。在较轻的离子等离子体中,“厚”电流板通常形成,其厚度超过了离子惯性长度的几倍[14,15,17]。积累在亚稳态电流板附近的磁能可以转化为热能,并转化为血浆高速流的能量[18-20]。等离子体沿着电流板的表面加速,主要是在最初从纸板的中部区域到其两侧的边缘的Ampère力的作用下[11,21]。在某些情况下,血浆加速度可以在空间上进行 -
了解颗粒在空气界面上的运动可能会影响广泛的科学领域和应用。diamagnetic颗粒在空气 - 磁流体界面上流动,是磁体的排斥运动。在这里,我们显示了一种运动机制,其中吸引了空气 - 磁流体界面上的磁磁颗粒,并最终被困在距磁铁偏低的距离处。还已经研究了磁性颗粒的行为,并在一个统一的框架中对运动机制进行了理论,表明颗粒在空气 - 磁磁性 - 液体界面上的运动不仅受磁能的控制,而且是由液体磁性磁性远程绘制的磁性构成的曲率相互作用,并且是液体磁性磁性的磁性磁性磁性的磁性磁性,且磁性磁性的磁性。有吸引力的运动机制已应用于定向的自组装和机器人粒子引导中。
技术、陆上和海上风电场、海上风电场规划考虑、风资源评估、风电场选址与优化、案例研究。光伏技术、光伏板比较(性能、成本)和光伏组件选择标准、光伏转换系统、可行性研究和选址、设计和监测技术、光伏技术的新发展、案例研究。 3. 储能技术(2周):公用事业规模储能系统的类型以及相关的电力电子系统和能源管理:抽水蓄能、水电站、电池、超级电容器、超导磁能和氢存储。汽车到电网的概念。 4. 燃气轮机和热电联产技术(1周):其排放与其他化石燃料电厂的比较。燃气轮机的类型及其特性和运行特点。联合循环、热电联产和三联产。联合循环发电机组的主要设备,联合循环发电机组的热力循环和性能指标。
摘要 — 在主动配电网中,可再生能源 (RES) 例如光伏 (PV) 和储能系统(例如超导磁能储能 (SMES))可以与消费者结合组成微电网 (MG)。光伏的高渗透率导致联络线潮流波动剧烈,并严重影响电力系统运行。这可能导致电压波动和功率损耗过大等若干技术问题。本文提出了一种基于模糊逻辑控制的 SMES 方法 (FSM) 和一种基于优化模糊逻辑控制的 SMES 方法 (OFSM),用于最小化联络线潮流。因此,波动和传输功率损耗降低了。在 FSM 中,SMES 与鲁棒模糊逻辑控制器 (FLC) 一起使用以控制联络线潮流。在 OFSM 中采用优化模型来同时优化 FLC 的输入参数和 SMES 的电压源换流器 (VSC) 的无功功率。将最小化联络线潮流作为优化模型的目标函数,利用粒子群优化 (PSO) 算法解决优化问题,同时考虑公用电网、VSC 和 SMES 的约束。仿真结果证明了所提方法的有效性和鲁棒性。
极快变异性的起源是Blazars伽马射线天文学中的长期问题之一。尽管许多模型解释了较慢,能量较低的可变性,但它们无法轻易考虑到达到每小时时间尺度的快速流动。磁重新连接是将磁能转化为重新连接层中相对论颗粒加速的过程,是解决此问题的候选解决方案。在这项工作中,我们在统计比较中采用了最新的粒子模拟模拟,观察到了众所周知的Blazar MRK 421的浮雕(VHE,E> 100 GEV)。我们通过生成模拟的VHE光曲线来测试模型的预测,这些曲线与我们开发的方法进行了定量比较,以精确评估理论和观察到的数据。通过我们的分析,我们可以约束模型的参数空间,例如未连接的等离子体的磁场强度,观察角度和大黄色射流中的重新连接层方向。我们的分析有利于磁场强度0的参数空间。1 g,相当大的视角(6-8°)和未对准的层角度,对多普勒危机的强烈候选危机进行了强大的解释,通常在高同步器峰值峰值的射流中观察到。
目的。太阳轨道器 (SolO) 于 2020 年 2 月 9 日发射,使我们能够研究内日球层湍流的性质。我们使用几乎不可压缩磁流体动力学 (NI MHD) 湍流模型和 SolO 测量研究了内日球层快速和慢速太阳风中各向异性湍流的演变。方法。我们计算了前向和后向传播模式下能量、波动磁能、波动动能、归一化残余能量和归一化交叉螺旋度的二维 (2D) 和平板方差,作为平均太阳风速度和平均磁场 (θ UB ) 之间角度的函数,以及作为日心距离的函数,使用 SolO 测量。我们比较了观测结果和 NI MHD 湍流模型的理论结果与日心距离的关系。结果。结果表明,前向和后向传播模式、磁场涨落和动能涨落的二维能量与平板能量之比随着平均太阳风流与平均磁场之间的夹角从 θ UB = 0 ◦ 增加到大约 θ UB = 90 ◦ 而增加,然后随着 θ UB → 180 ◦ 而减小。我们发现太阳风湍流是太阳中心距离函数中占主导地位的二维分量和少数平板分量的叠加。我们发现理论结果与观测结果在太阳中心距离函数中具有很好的一致性。
太阳喷发是日冕磁场能量的爆炸性释放,表现为太阳耀斑和日冕物质抛射。观测表明,喷发区的核心往往是剪切磁拱,即单一的双极结构,特别是在光球层,相应的磁极性沿强梯度极性反转线(PIL)拉长。什么机制会在单一双极场中触发喷发,以及为什么强PIL的场有利于产生喷发,目前仍不清楚。最近,我们利用高精度模拟,建立了太阳喷发的基本机制,即光球层准静态剪切运动驱动的双极场形成内部电流片,随后快速磁重联触发和驱动喷发。这里我们结合理论分析和数值模拟,研究了不同光球磁通分布即磁图下的基本机制的行为。研究表明,不同磁图的双极场在连续剪切下都表现出类似的演变——从磁能的缓慢储存到快速释放——这符合基本机制并证明了所提出机制的稳健性。此外我们发现具有较强PIL的磁图产生较大的喷发,关键原因是具有较强PIL的剪切双极场可以实现更多的非势能,并且它们的内部电流片可以在较低的高度形成较高的电流密度,从而可以更有效地重联。这也为在具有强PIL的活跃区域中观测到的喷发提供了可行的触发机制。
目标。我们旨在更好地表征太阳能电晕的条件,尤其是在发生构成和喷发性浮游的情况下。在这项工作中,我们对冠状动脉进化进行了建模,围绕在太阳周期期间观察到的231个大型植物。方法。使用每个事件周围的热震和磁成像矢量磁场数据,我们采用非线性的无线弹力外推来近似太阳能源区域的冠状能和螺旋性预算。应用于选定的光平量和冠状量的时间序列的超级时期分析和动态时间扭曲用于固定前和后的时间演化的特征,并评估与浮动相关的变化。结果。在延伸到主要频率之前的24小时内,总磁能和未签名的磁性频率被认为相对于彼此而言紧密发展,而不论频率是类型的。在构建浮游之前,自由能以一种与未签名的漏斗表现出更相似性的方式,而不是当前携带的场的螺旋性,而在喷发浮游之前则可以看到相反的趋势。此外,在组合活性区域非电位性和局部稳定性的测量时,可以正确预测超过90%的主要浮力的植物类型。冠状能量和螺旋性预算在爆发大型M级别浮游后的6至12小时内恢复到前水平,而爆发X伏的影响持续更长的时间。最后,爆发性X级浅水片的补充时间为12小时,可以作为在几个小时的时间范围内罕见地观察到喷发X级流动的部分解释。
电流板的厚度极为重要,尤其是与快速磁重新连接的开始有关。发作确定在爆炸性释放之前,在磁场中可以积聚多少磁性自由能。这对太阳和整个宇宙的许多现象具有影响,包括加热太阳电晕。重大努力已致力于以下问题:现实几何形状中的平衡电流板是否具有有限的厚度或零厚度。使用简单的力量平衡分析,我们说明为什么没有导向场(2D)的电流表(2D)以及在导向场方向(2.5D)不变的导向场,如果它们具有有限的厚度和有限的长度,则不能保持平衡。然后,我们估计弯曲线绑定导向场的张力可以促进在所有维度有限的3D纸中均衡的条件。最后,我们认为,一些准静态的电流表面正在缓慢压力,例如,当冠状磁场经过光球边界驾驶时,可能会达到临界剪切,这时它们会失去平衡,自发崩溃并重新连接。临界剪切通常与太阳能活动区域的加热要求一致。引言许多爆炸现象发生在太阳上,在地球球内以及整个宇宙中都涉及缓慢的积聚和突然释放磁能。太阳示例包括耀斑(Kazachenko等人2022),冠状质量弹出(Chen 2011),喷气机(Raouafi等人2016)和将电晕加热到数百万度的温度(Klimchuk 2015)。在典型的情况下,在系统边界处的缓慢强迫会导致磁应力生长。电流纸变得更薄,直到最终达到临界厚度,因此快速磁重新连接并爆炸。在太阳上,边界强迫由光电流提供,该流量流动冠状磁场的脚步
摘要: - 在高速飞机和铁路应用中使用再生制动系统(RBS)的使用表示能量回收,耗散和再利用的变革性进步。这项研究研究了专为高速导轨(HSR),太空发射恢复系统和弹道重新进入车辆而设计的复杂的电动力学,机电和混合动力学回收系统。在这些区域中的常规制动方法导致通过散热器大大损失能量,从而限制了系统效率。相比之下,使用超副作用,超导磁能储存(SME)和飞轮储能系统(FESS)的再生制动系统为有效的能量回收提供了理想的方法。固态电力电子设备与高速轨道逆变器在高速轨道上的组合可以使高速轨道上的高速轨道上的能量反馈到电网能量弹性,并提高电网的能量弹性,并弹性弹性弹性弹性弹性。在太空发射恢复中,创新的电动力系和基于等离子体的电磁制动制动器可实现轨道能量耗散,并具有调节的秋季动力学,从而最大程度地减少对逆转的依赖。弹道重新进入车辆使用空气动力集成的磁性水力动力学(MHD)制动系统,通过血浆鞘调节来促进受控减速并通过血浆鞘调节减少热通量。这项研究研究了通过适应效果的效率来调整效果效率,从而研究了重新分配和能量的能量效率。在强烈的机械应力下,压电纳米生成器在车辆组件中的整合增强了能量的回收,促进了多模式收获。建议的创新重新考虑了在高速速度运输系统中减速能源管理的基本范式,增强可持续性,降低了对消费依赖的依赖性,并降低了依赖性的依赖性,并具有长期的良好范围。未来的研究应集中于将基于量子点的超级电容器与固态锂空气电池合并,以增强高密度再生存储系统,从而加速下一代节能的航空制动和铁路制动技术。