<发明的名称>在简单的下尿路感染的预防中指示:1。作为长期预防疗法在初次治疗后使用适当的复发性尿感染的化学治疗剂。2。作为预防复发性膀胱炎的长期治疗。3。在具有留置导管,尿液收集器等患者中提供短期预防。并减少导管阻塞的发生率。4。在手术程序中提供预防,以防止感染引入尿路。5。在接受内属学程序的个体中无症状的细菌尿症。
Rahul Raj、Umesha C 和 Pranav Kumar DOI:https://doi.org/10.33545/26174693.2024.v8.i7Si.1606 摘要 田间试验于 2023 年喀里夫季节在农学系作物研究农场进行。实验采用随机区组设计,共十个处理,重复三次。处理细节如下:T 1:磷 40 千克/公顷 + 纳米尿素 1 毫升/升,T 2:磷 60 千克/公顷 + 纳米尿素 1 毫升/升,T 3:磷 80 千克/公顷 + 纳米尿素 1 毫升/升,T 4:磷 40 千克/公顷 + 纳米尿素 3 毫升/升,T 5:磷 60 千克/公顷 + 纳米尿素 3 毫升/升,T 6:磷 80 千克/公顷 + 纳米尿素 3 毫升/升,T 7:磷 40 千克/公顷 + 纳米尿素 4 毫升/升,T 8:磷 60 千克/公顷 + 纳米尿素 4 毫升/升,T 9:磷 80 千克/公顷 + 纳米尿素 4 毫升/升和对照地块。试验结果表明,施用 60 kg/ha 磷肥和 4 ml/l 纳米尿素(处理 8)可显著提高植株高度(202.00 cm)、最大植株干重(310.00 g/plant)、最大作物生长率(27.00 g/m 2 /day)、每穗最大行数(12.93)、行粒数(22.67)、种子指数(22.70 g)、籽粒产量(5.54 t/ha)、秸秆产量(9.92 t/ha)、收获指数(35.86%)。关键词:玉米,磷,纳米尿素,生长和产量。介绍玉米(Zea mays L.)是继水稻和小麦之后最重要的谷物作物之一,在全球农业中占有突出地位。在印度,玉米仅次于水稻和小麦,位居第三。在印度,玉米用于谷物和饲料,以及家禽和牛饲料混合物的成分和其他工业用途。玉米也称为玉蜀黍,是世界上最重要和最具战略意义的作物之一。其原产地是墨西哥(中美洲)。它是一种 C4 植物,被称为“谷物皇后”,因为它具有高生产潜力和跨季节的广泛适应性。它高效利用太阳能,具有巨大的增产潜力,被称为“奇迹作物”。玉米通过优质蛋白质在确保粮食安全和营养安全方面发挥着至关重要的作用。玉米的营养成分(每 100 克)如下:蛋白质 4 克。碳水化合物 30 克,膳食纤维 3.5 克,脂肪 1.5 克,糖 3.6 克,钙 4 毫克,锌 0.72 毫克等。(Dragana 等人,2015 年)[8]。玉米植株的每个部分都具有经济价值(谷粒、叶子、茎秆、穗和穗轴),都可用于生产各种食品和非食品产品。全球 170 多个国家种植玉米,面积达 1.88 亿公顷,产量达 14.23 亿公吨。自 2005 年以来,印度玉米种植面积位居第四位,为 989 万公顷,年产量为 3165 万吨,位居第六。在印度各邦中,中央邦和卡纳塔克邦的玉米种植面积最高(各占 15%),其次是马哈拉施特拉邦(10%)、拉贾斯坦邦(9%)、北方邦(8%)、比哈尔邦(7%)、特伦甘纳邦(6%)。目前,印度生产的玉米 47% 用于家禽饲料,13% 用于牲畜饲料,13% 用于食品,淀粉工业消耗约 14%,加工食品占 7%,6% 用于出口和其他用途。(IIMR,2021 年)。磷的应用会影响植物的生长行为。它是生长、糖和淀粉的利用、光合作用、细胞核形成和细胞分裂、脂肪和蛋白形成所必需的。光合作用和碳水化合物代谢产生的能量储存在磷酸盐化合物中,供以后生长和繁殖使用(Ayub 等人,2002 年)[5]。它在植物体内很容易转移,随着植物细胞的形成,从较老的组织转移到较年轻的组织
制药创新杂志 2023;SP-12(11): 1033-1036 ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS 评级:5.23 TPI 2023; SP-12(11): 1033-1036 © 2023 TPI www.thepharmajournal.com 收稿日期: 2023-08-08 接受日期: 2023-11-09 Amrutha G 印度卡纳塔克邦卡拉布拉吉农业学院农业微生物学系 Mahadevaswamy 印度卡纳塔克邦赖久尔农业科学大学农业微生物学系 Swapna 印度卡纳塔克邦赖久尔农业科学大学农业微生物学系 Anand N 印度卡纳塔克邦卡拉布拉吉农业学院土壤科学与农业化学系 Balakrishna R 印度卡纳塔克邦哈加里农业学院农业微生物学系 Suhas PD 印度北方邦普拉亚格拉杰 SHUATS 植物病理学系 通讯作者: Amrutha G印度卡纳塔克邦卡拉布拉吉农学院
2021 年 9 月 1 日备忘录致:夏威夷美容学校和美甲师申请人发件人:理发和美容委员会主题:NIC 美甲技术理论考试更新于 2021 年 10 月 1 日生效致相关人员,全国州际美容委员会 (NIC) 很高兴地宣布,NIC 美甲技术理论考试已更新,以反映当前的专业实践:上述考试的更新内容将于 2021 年 10 月 1 日生效。在该日期或之后参加这些考试的考生将根据更新的内容进行考试。理论考试的更新内容可在随附的考生信息公告 (CIB) 中找到。CIB 也可以从 NIC 网站 https://nictesting.org/candidate-information-bulletins/ 下载。CIB 提供与每项考试相关的详细信息。NIC 强烈建议仔细、彻底地审查 CIB。
住院患者的药物反应发生率为 2–3%,可影响身体的任何器官,包括皮肤及其附属物。指甲装置的每个组成部分都可能受到影响,要观察到的临床表现将取决于每个组成部分的状况。对于甲周皱褶,固定性药疹、Stevens-Johnson 综合征和 Lyell 综合征是相关的皮肤药物反应。甲周病变可以表现为疾病本身,也可以由药物反应引起。红斑、出血、坏死、疼痛性脱屑、水肿、水疱和色素异常是可能出现的病变。其他可能的反应包括甲沟炎和药物引起的化脓性肉芽肿的形成。因此,如果发生任何药物反应,评估甲周皱褶非常重要。
1在气相色谱场中的引入火焰电离检测器(FID)是最广泛使用的检测器。自1957年发作以来[1,2],它已被连续使用,在药物,石化,环境,精神,生物学和食物分析中都是必不可少的。相对模拟的仪器设计,宽线性范围和廉价范围有助于其受欢迎程度。设备的灵魂是大约2 mm的高lami nar扩散氢火焰,它为产生离子和电子的自由基机理链反应提供了一个位置。这些带电的颗粒被吸引到CIR CUIT中的阳极或阴极产生电流。电信号可通过安培仪表或电压表测量,可以转换为分析信息。
合成塑料在我们的现代生活方式中至关重要,因此它们的积累是环境和人类健康的最大关注之一。(petro)聚合物衍生自石油,例如聚乙烯(PE),聚乙烯三苯二甲酸酯(PET),聚氨酯(PU),聚苯乙烯(PS),聚丙烯(PP)和聚乙烯基氯(PVC)极为抗生物降解的自然途径。降解对自然环境有害的塑料是这项研究的目的。已经分离并表征了一些能够在体外条件下降解这种石油聚合物降解的微生物,发现属于形成芽孢杆菌和粘液真菌种类的内孢子组。在这项实验研究中,这些微生物表达的酶已被提取并作为降解程序的一部分进行处理。根据孤立的有机体,该过程非常长,需要长达60天或更长时间。从在线杂志中转介了几本类似的15-20个研究论文,以研究方法和结果。聚合物的生物降解速率取决于几个因素,包括化学结构,分子量和结晶度,它们是具有常规晶体(晶体区域)和不规则基团(无定形区域)的大分子的聚合物,而后者为聚合物提供了灵活性。基于宠物的塑料具有高度的结晶度,这是其微生物降解降低的主要原因。在这里,传统的肉汤介质用于降解方法。酶促降解发生在两个阶段:将酶吸附到聚合物表面,然后使用PETASE或其他此类酶水解键。可以在来自不同环境的微生物中找到塑料降解酶的来源,例如土壤,河滨,海滩等。在印度和其他亚洲国家有多种案例研究,水体被塑料废物污染,很少有肥沃的土地在地面土壤上存在塑料垃圾场,以找到一种解决方案,以消除这种有害的塑料废物,从环境中消除对动物,人类和其他生物的Organsim将来危险的危险。微生物和酶促降解的石油塑料废物是将petro塑料废物解散为聚合物单体或将废物塑料转化为增强生物产生物的有前途的策略,例如生物降解的聚合物。生物塑料作为应用。它提供了对环境中存在的有害塑料的帮助,因为它本质上可生物降解。
哺乳动物细胞基因组中DNA甲基化的形成,遗传和去除是由两个酶 - DNA甲基转移酶(DNMTS)和十个时期转运蛋白(TETS)的两个家族的调节。dnmts生成并维持5-甲基胞嘧啶(5MC)的遗传,这是由TET酶靶向的底物,用于转化为5-羟基甲基胞嘧啶(5HMC)及其下游氧化衍生物。DNMT和TET的活性取决于微量营养素和代谢产物副因素的可用性,包括必需的植物,氨基酸和微量金属,突出显示如何通过代谢和营养扰动如何直接增强,抑制或重塑DNA甲基化水平。在胚胎发育,谱系规范和维持体细胞功能的过程中需要动态变化,可以根据必需微量营养素的影响来进行细胞功能。随着年龄的增长,DNA甲基化和羟甲基水平在图案上漂移,导致表观遗传失调和基因组不稳定,这是多种疾病在内的多种疾病的形成和进展。了解如何通过微量营养素调节DNA甲基化将对维持衰老时正常组织功能的维持以及预防和治疗疾病以改善健康和寿命具有重要意义。
对于正在服用可增强血管加压素作用的药物的患者,建议谨慎使用 5% 葡萄糖静脉输液。以下药物可增强血管加压素作用,导致肾脏电解质自由水排泄减少,并可能增加静脉输液治疗后发生低钠血症的风险(参见第 4.4 和 4.8 节): 刺激血管加压素释放的药物,如氯磺丙脲、氯贝丁酯、卡马西平、长春新碱、选择性血清素再摄取抑制剂 (SSRI)、3.4-亚甲二氧基-N-甲基苯丙胺、异环磷酰胺、抗精神病药、阿片类药物。 增强血管加压素作用的药物,如氯磺丙脲、非甾体抗炎药 (NSAIDS)、环磷酰胺。 加压素类似物,如去氨加压素、催产素、加压素、特利加压素。
软件开发是一个持续、渐进的过程。开发人员不断以小批量而非一次性大批量的方式改进软件。小批量的高频率使得使用有效的测试方法在有限的测试时间内检测出错误变得至关重要。为此,研究人员提出了定向灰盒模糊测试 (DGF),旨在生成针对某些目标站点进行压力测试的测试用例。与旨在最大化整个程序的代码覆盖率的基于覆盖范围的灰盒模糊测试 (CGF) 不同,DGF 的目标是覆盖潜在的错误代码区域(例如,最近修改的程序区域)。虽然先前的研究改进了 DGF 的几个方面(例如电源调度、输入优先级和目标选择),但很少有人关注改进种子选择过程。现有的 DGF 工具使用主要为 CGF 定制的种子语料库(即一组覆盖程序不同区域的种子)。我们观察到,使用基于 CGF 的语料库限制了定向灰盒模糊测试器的错误查找能力。为了弥补这一缺陷,我们提出了 TargetFuzz,这是一种为 DGF 工具提供面向目标的种子语料库的机制。我们将此语料库称为 DART 语料库,它仅包含与目标“接近”的种子。这样,DART 语料库就可以引导 DGF 找到目标,从而即使在有限的模糊测试时间内也能暴露漏洞。对 34 个真实漏洞的评估表明,与基于 CGF 的通用语料库相比,配备 DART 语料库的 AFLGo(一种最先进的定向灰盒模糊测试器)可以发现 10 个额外的漏洞,并且平均在暴露时间上实现了 4.03 倍的加速。
