目前的研究旨在通过使用电泳沉积来表征钛底物上羟基磷灰石,锆和氧化石墨烯纳米复合材料。在第一阶段,除了表征创建的复合涂层外,通过使用扫描电子显微镜(SEM)评估了创建涂层的厚度和均匀性。另外,通过元素分析研究了纳米粉末颗粒的分布。在第二阶段,通过使用X射线衍射分析,绘制并研究了涂层中使用的材料的位置。在第三阶段,为了评估在向羟基磷灰石中添加纳米颗粒而导致的涂层腐蚀行为,并将其与非涂层样品进行了比较,对化学偏振形式的电化学分析进行了比较,并与绘制相关图表进行了分析。最后,在第四阶段,进行了涂层上大肠杆菌和葡萄球菌细菌的抗菌测试,并与未涂层的合金样品进行了比较。腐蚀测试结果表明,使用纳米复合涂层会导致表面耐腐蚀性的增加。抗菌测试结果表明,使用纳米复合涂料可有效地降低表面细菌的生长。
二氧化钛(TIO 2)最近引起了极大的关注,这主要是由于骨科和纳米材料科学的交集。这种感兴趣的激增可以归因于良好的理解,即Ti金属在暴露于大气条件时会经历表面氧化,最终导致外部面上强大的天然Tio 2层的形成。诸如阳极氧化等技术进一步增强了这一过程,从而导致了在生物学上兼容和成骨的钝化表面涂层的发展。纳米材料化学的进步在该结构域中至关重要,从而使TIO 2结构的受控组装(包括纳米纤维和纳米管)具有受控组装。此外,已经确定了特定的合成方法,可以产生具有分层结构的钛酸簇,这有利于磷灰石形成 - 天然骨组织的无机复合物。也值得注意的是,二氧化钛具有反应并转化为钛纳米管或纳米线的能力。这种特征已被证明是有益的,因为它已被证明可以促进与体液的离子交往相互作用,从而支持骨组织生长。具体来说,当将钛材料放入模拟的体液中时,离子交换开始并鼓励羟基磷灰石的产生,羟基磷灰石是天然骨的基本成分。纳米材料化学丰富了这一研究领域,许多实验室已经研究了结构控制TIO 2的形态,例如纳米纤维和纳米管[11,12]。这种产生的离子层结构作为阳离子储层起着至关重要的作用。已经确定了合成方法中的进步来产生钛酸盐材料,这些材料由它们的粘土状晶格(由边缘共享TIO TIO 6八面体组成)与阳离子实体散布在一起[13]。这种分层结构特别有利于模拟体液(SBF)中的磷灰石形成。更具体地说,涉及粉状TIO 2矿物质的热液反应,例如假酶和氧化钠或氢氧化钾溶液,会根据反应条件而产生Na-或K- titanate纳米管或纳米线。它有助于体液中发现的阳离子的离子交换,因此自主维持阳离子平衡原位,这对于骨组织生长至关重要。在SBF环境中,Na/k- titanate和钙(Ca 2+)之间的浓度梯度促使具有Ca 2+的单价Na +或K +离子的离子交换。这为随后的相互作用设定了阶段:磷酸盐阴离子的协调{即(PO 3)3-,(HPO 3)2-和(H 2 PO 3) - 从体液与泰坦酸盐结合的Ca 2+的体液中的(H 2 PO 3) - }。这种相互作用的顶点是形成水合磷酸钙或羟基磷灰石的形成,羟基磷灰石是天然骨的必不可少的基础[13]。
羟基磷灰石(HA)已获得了一种在多种生物医学领域(如骨科和牙科)中广泛利用的生物陶瓷的认可。本研究的目的是将羟基磷灰石与Rohu鱼骨分离,并将其整合到具有牙科使用潜力的生物材料中。纳米复合膜。SEM研究将HA确定为纳米球,晶体尺寸低于30 nm。掺入PEGDMA中时,这些纳米颗粒会聚集,可能会破坏聚合物链相互作用并影响膜的机械性能。从经受较高温度钙化的鱼骨获得的XRD模式表现出高度强和尖锐的峰,表明去除了有机部分。FTIR结果证实,由于成功的自由基聚合反应,碳对碳双键的消失。PEGDMA和IRGACURE 2952(86.1409 kJ/mol)的融合焓高焓建议,他们需要高能量才能熔化,而其放热结晶焓(21.35378 kJ/mol)表示,固化后热量释放。添加羟基磷灰石减少了这些焓,表明更容易熔化和凝固,这可能有助于加工为生物医学应用开辟新的可能性,尤其是在牙科中。
[2] B. Chaudhuri,G。Sardar,MD。Masud,J Uddin,B。K。Chaudhuri和K. Pramanik。 观察聚乙烯醇/聚乙烯基吡咯烷酮混合 - 羟基磷灰石和氧化石墨烯复合材料中的电导率和介电常数;使用人脐带血干细胞的生物相容性研究。 proc。 int。 聚合物科学技术研讨会,加尔各答(1月23-26日)P-522,PB10(2015)。Masud,J Uddin,B。K。Chaudhuri和K. Pramanik。观察聚乙烯醇/聚乙烯基吡咯烷酮混合 - 羟基磷灰石和氧化石墨烯复合材料中的电导率和介电常数;使用人脐带血干细胞的生物相容性研究。proc。int。聚合物科学技术研讨会,加尔各答(1月23-26日)P-522,PB10(2015)。
摘要背景:磷酸钙在牙科中的应用可以作为牙髓盖髓治疗的替代材料。红树蟹壳含有较高的磷酸钙,可以作为牙髓盖髓治疗的替代材料。目的:测定红树林蟹壳(Scylla serrata)中磷酸钙的含量。方法:本研究为定量描述性研究,样本采集采用目的抽样法。结果:经XRD测试分析红树蟹壳中磷酸钙的含量,99.8%以羟基磷灰石的形式存在,0.2%以钙的形式存在。结论:采用X射线衍射(XRD)设备分析磷酸钙的含量,其中羟基磷灰石形式的磷酸钙含量为99.8%,钙形式的磷酸钙含量为0.2%。关键词: 锯缘青蟹壳(Scylla serrata);牙髓盖顶;磷酸钙
生物活性玻璃 有助于软组织和骨组织再生的生物材料,由于疗效证据不足,不适用于以下用途: • 与根尖周围手术结合使用 • 用于治疗牙龈黏膜畸形 所有其他生物材料,包括但不限于骨形态发生蛋白、羊膜和干细胞,由于疗效证据不足,不适用于再生。 自体血浓缩产品的收集和应用 由于疗效证据不足,不适用于自体血浓缩产品的收集和应用。 定义 自体血浓缩物:使用患者自身血液制成的血液产品,包括富血小板纤维蛋白 (PRF) 和富血小板血浆。 (PRP) 生物活性玻璃:一组生物相容性的生物陶瓷材料,在钙和磷酸盐含量方面与骨羟基磷灰石相似。它们在暴露于体液时会溶解,并通过在其表面形成磷灰石晶体,获得与骨骼和牙齿组织中存在的磷灰石晶体发生化学结合的能力。(Jafari 2022)生物材料/生物反应调节剂:改变伤口愈合或宿主-肿瘤相互作用的药剂。此类材料可以包括细胞因子、生长因子或疫苗,但不包括任何实际的硬组织或软组织移植材料。这些药剂被添加到移植材料中或单独使用,以加速硬组织和软组织外科手术中的愈合或再生。(ADA)
摘要。本文描述并介绍了一种自动计数矿物中蚀刻裂变径迹的新方法。训练了深度神经网络和计算机视觉等人工智能技术来检测图像上的裂变表面半径迹。深度神经网络可用于名为“AI-Track-tive”的半自动裂变径迹测年的开源计算机程序。我们定制训练的深度神经网络使用 YOLOv3 对象检测算法,该算法是目前最强大、最快的对象识别算法之一。开发的程序成功地在显微镜图像中找到了大多数裂变径迹;然而,用户仍然需要监督自动计数。所提出的深度神经网络对磷灰石(97%)和云母(98%)具有很高的精确度。磷灰石(86%)的召回率低于云母(91%)。该应用程序可以在 https://ai-track-tive.ugent.be 在线使用(最后访问时间:2021 年 6 月 29 日),也可以作为 Windows 的离线应用程序下载。
使用3D激光辅助生物打印系统,在大鼠颅缺损模型中对羟基磷灰石和间充质干细胞的体内印刷; Victor Segalen Bordeaux-2,Inserm U-1026,法国波尔多,2013年,4个月,访问研究员,项目经理:Fabien Guillemot博士。
†在水性检查后确定。‡由RP-HPLC确定。 §将其作为回收的粗混合物x纯度(%)。 ¶从前一个条目进行了重新封闭。 #RP-HPLC和ESI-MS还检测到depsripeptides的存在。通过硅胶垫过滤后††。 boc:tert-butycarbonyl; CBZ:苯甲酰氧气; ESI-MS:电喷雾电离质谱法; FMOC:氟苯基甲氧基碳苯甲; HAP:羟基磷灰石; RP-HPLC:反相高性能液相色谱。‡由RP-HPLC确定。§将其作为回收的粗混合物x纯度(%)。¶从前一个条目进行了重新封闭。#RP-HPLC和ESI-MS还检测到depsripeptides的存在。通过硅胶垫过滤后††。boc:tert-butycarbonyl; CBZ:苯甲酰氧气; ESI-MS:电喷雾电离质谱法; FMOC:氟苯基甲氧基碳苯甲; HAP:羟基磷灰石; RP-HPLC:反相高性能液相色谱。