摘要:最近兴起的卤化物基固体电解质(SE)具有良好的离子电导率、宽的电化学稳定性窗口以及与高压氧化物正极的良好兼容性,是高性能全固态电池(ASSB)的理想候选材料。与卤化物 SE 中的结晶相相比,非晶态组分很少被理解,但在锂离子传导中起着重要作用。本文揭示了通过机械化学方法制备的卤化物基 SE 中非晶态组分的存在很常见。发现快速的锂离子迁移与非晶态比例的局部化学有关。以 Zr 基卤化物 SE 为例,可以通过掺入 O 来调节非晶化过程,从而形成角共享的 Zr-O/Cl 多面体。这种结构配置已通过 X 射线吸收光谱、对分布函数分析和逆蒙特卡罗建模得到证实。独特的结构显着降低了锂离子传输的能垒。结果显示,非晶态 Li 3 ZrCl 4 O 1.5 在 25 ° C 时可实现 (1.35 ± 0.07) × 10 − 3 S cm − 1 的增强离子电导率。除了提高离子电导率外,通过掺入 O 对 Zr 基卤化物 SE 进行非晶化还可获得良好的机械变形能力和良好的电化学性能。这些发现为合理设计高性能 ASSB 所需的卤化物 SE 提供了深刻见解。
聚合物长期以来一直用作绝缘材料。例如,将金属电缆涂在塑料中以使其隔热。但是,到目前为止,已经开发了至少四个主要类别的半导体聚合物。它们包括共轭的导电聚合物,电荷转移聚合物,离子导电聚合物和电导填充的聚合物。首次在1930年首次制作了导电性的导电聚合物,以预防电晕放电。由于其易于处理,良好的环境稳定性和广泛的电气性能,因此将电导填充聚合物的潜在用途倍增。作为一种本质上的多相系统,它们缺乏同质性和可重复性一直是导电填充聚合物的固有弱点。因此,控制分散质量以获得均相导电聚合物复合材料至关重要。1975年离子聚合物中电导率的报告(Wright,1975)引起了相当大的兴趣。从那时起,已经准备了各种从可充电电池到智能窗户的广泛的应用,已经准备好各种离子导电聚合物或聚合物电解质。聚合物电解质也很高。离子传导机制需要相反的离子电荷解离,并且配位位点之间的离子迁移是由聚合物链段的慢运动产生的。因此,聚合物电解质通常显示出低电导率和对湿度的高灵敏度。他们经常在干燥时变成无电。在1950年代(Akamatu等,1954)中发现分子电荷转移(CT)复合物中电导率的发现促进了导电CT聚合物的发展,并导致了与分子CT复合物的超导性发现,1980年(Jerome等人,1980年,1980年)和1986年(1986年)(1986年)(1986年)(iqal)(iqal)(iqal),eqbal(iqal)。CT复合物中的电导率源于
摘要:电解质-电极界面的不稳定性导致循环稳定性差,以及与高能量密度锂金属阳极相关的安全问题,阻碍了耐用且高能量密度锂离子电池的发展。固体聚合物电解质 (SPE) 可以帮助缓解这些问题;然而,SPE 的导电性受到聚合物链段动力学缓慢的限制。我们通过两性离子 SPE 克服了这一限制,这些 SPE 自组装成超离子导电域,允许离子运动和聚合物链段重排解耦。虽然结晶域通常不利于 SPE 中的离子传导,但我们证明具有不稳定离子-离子相互作用和定制离子尺寸的半结晶聚合物电解质表现出优异的锂电导率 (1.6 mS/ cm) 和选择性 (t + ≈ 0.6 − 0.8)。这种新的 SPE 设计范例允许同时优化以前正交的属性,包括电导率、锂选择性、力学和可加工性。 ■ 简介
1. Y. Wang, Z. Wei, T. Ji, R. Bai, H. Zhu,“用于柔性固态超级电容器的高离子导电、可拉伸和坚韧的离子凝胶”。Small,2023 年。2. D. Cao, T. Ji, Z. Wei, W. Liang, R. Bai, KS Burch, M. Geiwitz, H. Zhu,“通过自调节内部压力提高无阳极固态电池的锂剥离效率”。Nano Letters,2023 年。3. Z. Wei, P. Wang, R. Bai,“多畴液晶弹性体中的热机耦合”。应用力学杂志,2024 年。4. Y. Xiao, Q. Li, X. Yao, R. Bai, W. Hong, C. Yang,“具有动态共价键的非晶态水凝胶的疲劳”。 Extreme Mechanics Letters,2022 年。5. Z. Wei、R. Bai,“光活性液晶弹性体的温度调节光机械驱动”,Extreme Mechanics Letters,2022 年。6. R. Bai、E. Ocegueda、K. Bhattacharya,“光活性半结晶聚合物中的光化学诱导相变”。Physical Review E,2021 年。
低成本和高效率的基于Zn的流量电池(ZFB)已成为可再生能源开发的有前途的能源存储技术之一。然而,在ZFB中,由于存在Zn 2 +,一个阴离子交换膜(AEM)损失离子电导率。Zn 2 +沉淀的侧反应导致AEM与第四纪基团的离子交换分解。虽然阳离子交换膜(CEM)由于离子交换组和阴离子之间的静电相互作用而阻碍阴离子结构。为了解决ZFB中离子交换膜不良的电导率,基于聚醚酰亚胺(PEI)的多孔离子导电膜是通过ZFBS的水相反转技术开发的。离子导电机制基于孔径的排除,这减轻了离子交换组对离子电导率的影响。通过引入合适的聚乙烯基吡咯烷酮(PVP)并控制四氢呋喃(THF)挥发时间,可以进一步改善膜性能。结果表明,在Zn/4-羟基-2,6,6-6,6-四甲基二哌啶中,1-氧基(TEMPO-OH)流量电池,库仑效率(CE)超过98%,能量效率(EE)在20 mA-cm-2-2-2中的能量效率(EE)可实现,并且可以在20 mA cm-2-2中以20 ma-2的供应来实现。 150个周期。基于PEI的多孔膜(低成本和高效率)被认为是ZFB的有希望的策略。
固体聚合物电解质 (SPE) 有可能使锂离子和锂金属电池实现高能量密度、先进的制造能力和增强的安全性。然而,缺乏足够的分子尺度的锂离子传输机制见解和对关键相关性的可靠理解,往往会限制新材料的修改和设计范围。此外,对聚合物化学结构细微变化的敏感性(例如,选择特定的键或化学基团)通常被忽视为潜在的设计参数。在本次演讲中,我们将使用三个示例来展示原子分子动力学 (MD) 模拟如何补充实验研究并揭示聚合物结构变化与 Li+ 传输能力之间重要的分子尺度相关性。对于传统的 SPE,我们证明通过调整聚合物链的化学结构,可以实现从 Li+ 和聚合物链段运动状态之间的强耦合到解耦状态的转变。在单离子导电聚合物凝胶中,我们表明聚合物主链的微小修改显着增强了 Li+ 传输。最后,我们展示了 MD 模拟如何指导由聚轮烷超分子自组装组成的新型 SPE 的设计,其中编织线性链和环状分子的形态允许将 SPE 中的机械和传输特性解耦。
为了实现氢经济和新的脱碳能源模式,需要降低从生产到最终使用的核心清洁氢技术的成本和效率。在生产方面,这体现在能源部的“氢能地球计划”中,即在 10 年内将氢气生产成本降至 1 美元/千克,以及区域清洁氢中心计划。使用可再生清洁电力作为原料达到这些成本指标的固有方法是使用电解。电解技术中最重要的是利用离子导电聚合物(离子聚合物)的技术,包括聚合物电解质水电解器 (PEWE)。然而,这些技术需要表现出更高的效率、(动态)性能和耐用性,以降低成本并实现商业可行性。同样,离子聚合物对于实现固定和重型应用的燃料电池 (PEFC) 至关重要。 PEWE 和 PEFC 都涉及多个组件(例如催化剂、离子聚合物、传输层、膜、板)和多个阶段,现象发生在不同的时间和长度尺度上。这些技术的关键是离子聚合物和催化剂之间的界面,而传输现象在其中起着关键作用。在本次演讲中,我们将通过劳伦斯伯克利国家实验室的最新进展(包括基于离子聚合物的水电解中心 (CIWE) 的努力)概述其中一些技术。
研究二维材料时,一种常见的方法是将它们支撑在固体基底表面上。在这种情况下,如果要按需插入离子,即通过某种控制机制,则必须使离子与电解质接触。二维材料中特定离子相对于对电极的化学势差为离子插入提供了可控的驱动力。尽管基底本身可以充当固态电解质,例如离子导电玻璃陶瓷,[10–12] 但支撑二维材料层之间的离子插入可能会受到阻碍,因为有效插入通常通过边缘或缺陷位进行。从顶部涂抹电解质时更有可能覆盖这些位置——这种方法近年来被广泛使用,主要用于静电门控。 [13,14] 为了系统地解决离子插入和传输问题,将电解质与 2D 材料以图案化方式整合在一起非常重要,例如,对离子扩散过程施加方向性。这主要是样本大小和图案分辨率问题,在 100 µm 及以上的规模上可以解决,例如通过固态电解质的增材制造 [15] 或液态电解质的喷墨打印。[16–18] 目前,这些方法的局限性在于打印分辨率以及电解质的机械性能。因此,粘稠电解质或离子凝胶更容易打印,[16] 而一系列低粘度电池级电解质(如碳酸乙烯酯/碳酸二乙酯中的 LiPF 6)则不然。这些电解质往往很容易润湿样品的大部分表面,必须
要研究2D材料,一种共同的途径是在固体基板的表面上支撑它们。在这种情况下,如果要按需插入离子,即通过某种控制机制,则必须与电解质接触。相对于计数器电极,给定的2D材料中给定的离子物种的化学潜力差异为离子插入的驱动力提供了可以控制的驱动力。尽管底物本身可以用作固态电解质,例如在离子导电玻璃陶瓷的情况下,[10-12]在受支持的2D材料的层之间插入离子插入可能会受到阻碍,因为通常有效地插入了通常通过边缘或缺陷站点进行有效插入。在从顶部施加电解质时,覆盖它们的可能性更大 - 近年来,这种方法主要用于静电门控。[13,14]为了以系统的方式插入和运输的目的解决,重要的是以图案化的方式将电解质与2D材料集成在一起,例如在离子扩散过程上强加方向性。这主要是样本量和模式分辨率问题,可以通过100 µm及以后的规模来解决,例如,通过固态电解质的添加剂制造[15]或通过对液体的喷墨打印。[16–18]这些方法的当前局限性是通过打印分辨率以及通过电解质的机械性能来设置的。这些往往很容易弄湿样品表面的大部分,必须因此,粘性电解质或离子 - 凝胶更直接地打印[16],而一系列低粘度电池级电解质(例如碳酸乙酯/碳酸乙酯中的LIPF 6)不是。