本研究通过 TCAD 研究了重离子撞击对具有偏置场环的 beta-Ga 2 O 3 肖特基二极管的响应以及由此产生的单事件烧毁。使用实验电流-电压 (IV) 曲线验证了用于模拟高反向偏置下器件的模型。器件的场环配置表明,在模拟重离子撞击后,电荷去除效果有所改善。如果电荷去除的时间尺度比单事件烧毁更快,则这可能是一种有效的减少单离子撞击影响的机制。本研究探讨了终端结构的各种配置,并展示了不同设计参数对离子撞击后瞬态响应的影响。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用作品,只要对原始作品进行适当的引用。[DOI:10.1149/2162-8777/acbcf1]
由于其在极高温度下的稳定性,石墨通常在核反应堆中用作中子的主持和反射器。石墨中发生的物理和结构变化源于由于快速中子的影响和相关的后坐力级联反应而导致的晶体格子损伤。因此,了解其辐射硬度(即其在中子和离子照射下的稳定性)对于安全使用石墨至关重要。高度定向的热解石墨(HOPG)是一种最高质量石墨的合成形式,其镶嵌物扩散小于一个度。其平面表面适合通过扫描隧道显微镜(STM)和原子力显微镜(AFM)分析。因此,它已在许多离子辐照实验中用于离子撞击位点的原子尺度研究[1]。
敏感节点对之间的电荷共享。当入射离子撞击敏感晶体管(例如节点 mn2 中的 PMOS 晶体管)时,一列电子-空穴对会沿入射轨道电离。电离载流子扩散到相邻的晶体管,导致相邻敏感节点之间的电荷收集,如图 3 所示。对于传统的 DICE 触发器,敏感节点对将收集足够的电荷并导致 SEU。对于所提出的 MSIFF,增加的节点间距可有效减少由于复合过程引起的扩散收集。此外,从属锁存器的插入组件也有助于收集额外的载流子 [19]。它将显著降低电离载流子密度并阻止扩散收集过程。因此,敏感节点对不会同时收集足够的电荷,并且所提出的 MSIFF 中不会发生 SEU。
由 HBr/O 2 组成的等离子体通常用于硅蚀刻工艺,如栅极蚀刻工艺或浅沟槽隔离蚀刻,由于人们对此类化学反应中的硅蚀刻相当了解,因此它成为研究等离子体脉冲对气相和等离子体-表面相互作用的影响的最佳选择。目标是了解连续等离子体和脉冲等离子体之间的根本区别,以及等离子体产生的变化如何影响最终的图案转移。在论文 I 中,我们展示了等离子体脉冲对离子通量和离子能量的强大影响。1 结果显示,占空比 (dc) 而不是脉冲频率对这些参数有显著影响。在本文中,我们重点研究等离子体脉冲对 HBr/O 2 等离子体中的蚀刻机制和图案转移的影响。先前的实验已经证明脉冲等离子体中等离子体引起的损伤有所减少,2 – 4 通常通过使用扫描电子显微镜 (SEM) 成像、椭圆偏振测量和 X 射线光电子能谱 (XPS) 对侧壁钝化层 (SPL) 进行形貌分析。许多作者已经研究了 HBr/O 2 等离子体对硅和 SiO 2 的蚀刻机理。5 – 13 下面总结了 Si 和 SiO 2 蚀刻的基本机理,其中考虑了原料气中极小比例的氧气。含溴、氢和(较少量)氧的离子撞击硅表面、分解、破坏键并形成富含卤素的非晶层,也称为反应蚀刻层 (REL),其中含有 H、Br 和一些 O 原子。非晶层的厚度和成分会根据离子能量、压力和原料气流量而变化。由于氢原子比其他粒子小得多,它们可以更深地渗透到硅层中,然后硅原子可以因碰撞而解吸,或可以融入挥发性物质,如 SiBr 4。含氢分子如 SiH 2 Br 2 的挥发性更强,13 但硅蚀刻并不