Ionkleen AQ净化器是专门设计用于从超纯水中去除金属离子的。它非常适合在半导体行业最关键的最终清洁过程中使用。利用PALL的最新技术发展,Ionkleen AQ膜已被修改,以在其表面上掺入离子交换组,从而从超纯水中自发和直接的金属去除。
使用多级信息载体(也称为量子比特)是探索量子计算设备可扩展性的一条有前途的途径。在这里,我们介绍了一种量子处理器寄存器的原理验证实现,该寄存器使用线性阱中的光寻址 171 Yb + 离子量子比特。171 Yb + 离子的丰富能级结构允许使用 435.5 nm 四极时钟跃迁的塞曼子能级进行高效且稳健的量子比特编码。我们展示了由单量子比特旋转和双量子比特 Mølmer-Sørensen 操作组成的通用门集的实现,该操作使用双量子系统,形式上等同于基于通用门的四量子比特处理器。我们的研究结果为进一步研究使用基于捕获离子的处理器更有效地实现量子算法铺平了道路,特别是探索 171 Yb + 离子量子比特的性质。
•开发低成本的钠电池和电池架构,用于存储解决方案; •通过开发一种新颖的低成本钠离子电池架构来证明钠离子电池对国内规模,商业规模和公用规模可再生能源存储应用的实用性,成本和竞争力; •开发一个总体能源管理系统,包括用于实用程序应用中的钠离子电池解决方案的电池,负载,发电和热管理; •通过Illawarra Flame House和Sydney Water的Bondi Pumping Station SPS005,通过集成的钠离子电池技术来展示交钥匙能源管理系统的商业应用和市场竞争力; •确定在国内规模,商业规模和公用事业规模应用中基于钠离子的能源存储的关键领域,并提供技术经济分析,以分析广泛采用基于钠离子的储能对这些市场的影响; •准备操作风险概况,建立与在国内,商业和公用事业规模可再生能源系统中集成钠离子电池技术相关的操作风险(生产,质量和成本)的变化。
本文介绍了一种用于捕获离子的量子实验中磁场噪声的前馈补偿系统。该补偿系统在两个实验装置中实现,一个用于量子模拟,另一个用于精密光谱学。在这两个实验中,量子比特都被编码在一对捕获的 40 Ca + 离子的电子能级中。补偿系统用于抑制实验室中由 50 Hz 电源线引起的环境磁场噪声。基于磁场线圈和函数发生器的前馈系统采用一种简单的技术方法,以产生调制磁场。前馈补偿系统的工作原理是施加异相磁场,以破坏性地叠加离子位置的磁场噪声。对于函数发生器,使用可编程的 RedPitaya 板。在这项工作中,为该板开发了一个控制软件,允许补偿系统快速运行。此外,还开发了一个实验序列,其中离子量子比特被用作量化磁场噪声的传感器。该实验依赖于 CPMG π 脉冲序列。
抽象锌纤维素透明液玻璃杯用(70-X)TEO 2 -20B 2 O 3 -10ZNO-XSM 2 O 3系统掺杂的SM 3+离子是通过熔融技术制备的。X的值从0.0 mol%到2.5 mol%不等。通过傅里叶变换红外光谱(FTIR),吸收光谱,光条间隙(E OPT)和URBACH能量(δE)分析进行了SM 3+离子的结构和光学表征研究。从FTIR分析中,研究了准备玻璃中的BO 3,BO 4,TEO 3,TEO 4和B - O-结构单元的存在。由于基态和SM 3+离子的各种激发态引起的紫外线中的三个强吸收峰,并从吸收光谱中观察到可见区域。直接过渡的光节间隙,E OPT的值分别为2.605 eV至2.982 eV,分别用于间接过渡的2.768 eV至3.198 eV。同时,在0.112 eV至0.694 eV的范围内观察到URBACH能量(δE)。对其他一些结果进行了详细分析和讨论。关键字:光学特性,锌,硼固醇,吸收光谱
共价键的特征。简单分子和离子的杂交和形状。价壳电子对排斥(VSEPR)理论简单分子和离子。分子轨道理论,用于同核和异核(CO和NO)双原子分子,电子缺乏分子中的多中心键,键强度和键能,偶极力矩和电负性差的离子特征。
图1:(a)表现出负T li的实验探测系统(来自Elabd的工作47的盐掺杂S-B- [VBMIM] [TFSI])和阳性T LI(来自Forsyth的工作10的盐掺杂[PDADMA] [FSI] 10); (b)在我们的模拟中探测了带有阴离子TFSI-和锂离子阴离子的PVBMIM和PB-VIM系统的化学细节。
锂离子和锂离子后电池是建造可持续能源系统的重要组成部分。它们通常由阴极,阳极,电解质和分离器组成。最近,将固态材料用作电解质已受到广泛关注。传统上,固态电解质材料(以及电极材料)是绝大多数的结晶材料,但是无定形(无序)材料逐渐成为重要的替代品,因为它们可以增加离子存储位点和数量的数量,并增加了固态离子离子的数量,增强了固态离子离子的差异,并耐受重大的重复变化,并改善了重复的重复变化。为了开发出色的无定形电池材料,研究人员进行了多种实验和理论模拟。这篇评论强调了使用无定形材料(AMS)制造锂离子和锂离子后电池的最新进展,重点是材料结构与性质之间的相关性(例如电化学,机械,化学和热的材料)之间的相关性。我们回顾了分析AM的常规和新兴表征方法,并介绍了疾病在影响各种电池(例如基于锂,钠,钾和锌)的性能中的作用。最后,我们描述了将可充电基于AMS的电池商业化的挑战和观点。
红外激光器在感应,检测,通信,药物和其他领域具有广泛的应用。直接泵送固态激光器的原理很简单,并且可以轻松实现高功率和高效率激光输出,这是获得红外激光器的重要手段之一。将稀土离子纳入底物,因为直接泵送固态激光器的增益介质可以改变其光学性能并进一步增强激光的性能。基于稀土离子掺杂的激光器的体积较小,转化率较高,良好的光束质量,广泛的调谐范围和多个操作模式。因此,掺杂作为激活离子的增益培养基的稀土离子的比例非常大。在这篇综述中,Ho 3+,TM 3+和ER 3+被选为代表性的稀土离子,其光学特性(例如发光功率和荧光寿命)分别引入了晶体,陶瓷和纤维等不同的底物,分别引入了它们的可行性,以说明其可行性,以说明它们的可行性。此外,当用两个离子,三个离子和四个离子掺杂时,我们还显示了不同的光学特性,这些光学特性表明它们作为红外激光增益培养基的巨大潜力。
在选定的量子状态下制备分子离子的能力可以在化学,计量学,光谱,量子信息和精度测量等领域进行研究。在这里,我们在分子束和离子陷阱中演示了(2 + 1)氧气增强的多光电离(REMPI)。REMPI频谱中的两光子转变是旋转分辨的,从而使从O 2的选定的Rovintarational态电离。拟合在此频谱上确定O 2 D1πg状态的光谱参数,并解决有关其带源的文献中的差异。被捕获的分子离子被共捕获的原子离子冷却。荧光质谱法非损坏性证明了光电离O + 2的存在。我们讨论了最大化地面旋转状态产生离子比例的策略。对于(2 + 1)通过d1πg状态,我们表明,在低于50 K的旋转温度下,Q(1)过渡是中性O 2的首选,而在较高温度下,O(3)过渡更适合。状态选择性负载和对捕获分子离子的无损检测的组合具有光学时钟,基本物理测试以及化学反应的控制中的应用。