我们介绍了 Perceval,这是一个用于模拟和与离散变量光子量子计算机交互的开源软件平台,并描述了它的主要特性和组件。它的 Python 前端允许光子电路由基本的光子构建块组成,例如光子源、分束器、移相器和探测器。有各种计算后端可用,并针对不同的用例进行了优化。它们使用最先进的模拟技术,涵盖弱模拟或采样和强模拟。我们通过重现各种光子实验并模拟一系列量子算法的光子实现(从 Grover 和 Shor 的算法到量子机器学习的例子),给出了 Perceval 的实际应用示例。 Perceval 旨在成为一个有用的工具包,适用于希望轻松建模、设计、模拟或优化离散变量光子实验的实验者,希望为离散变量光子量子计算平台设计算法和应用程序的理论家,以及希望在现有的最先进的光子量子计算机上评估算法的应用程序设计者。
438 高禁带约束振动结构与声子晶体离散变量拓扑优化 袁亮 博士 152 大连大学
随着量子技术的出现,信息技术的发展已到达一个关键点,有望实现无与伦比的计算能力和解决问题的能力。基于离散变量和连续变量的量子计算有望有效解决计算上难以解决的问题。离散变量量子计算依赖于有限维希尔伯特空间中编码的量子,而连续变量量子计算则利用谐振子的无限维希尔伯特空间。这两种范式在实现通用性和容错性方面都面临挑战,因此需要探索非高斯性和魔法等资源理论。本论文研究了离散和连续变量系统的量子计算资源,并有助于加深我们对实现不同架构中量子计算潜力所必需的资源的理解。我们研究这些资源理论之间的相互作用,提出新的量词并建立离散和连续变量量子计算之间的联系。
量子密钥分发 (QKD) [1–3] 解决了两个用户之间共享密钥的问题。此类密钥可用于安全通信。尽管原始 QKD 协议 [2–5] 依赖于在离散量子态(如单光子的偏振)中对经典信息比特进行编码,但人们也可以利用连续变量 QKD (CV QKD) 协议,其中比特在光的正交相位上进行编码 [6–9]。尤其是,CV QKD 系统的最新进展使其与传统的离散变量系统 [10, 11] 处于竞争地位。例如,与需要单光子探测器的离散变量 QKD 协议相反,CV QKD 使用相干测量方案(如同差和/或异差检测)来测量光正交相位,与高速率相干电信系统兼容 [12–14]。此外,与大都市区域相比,CV QKD 协议在短距离内是更好的选择 [11]。然而,一旦涉及长距离,CV QKD 就有其自身的挑战来与离散变量 QKD 竞争 [15]。本文研究了如何通过使用现实的非确定性放大来增强 CV QKD 系统中的安全距离 [16]。提出的提高 CV QKD 协议速率与距离性能的解决方案之一是使用无噪声线性放大器 (NLA) [16,17]。众所周知,确定性放大不可能无噪声 [18]。NLA 只能以概率方式工作。这不可避免地会将密钥速率降低一个与 NLA 成功率相对应的倍数,这意味着,在短距离内,使用 NLA 可能没有好处。然而,由于信噪比的提高,密钥率可能会在长距离上增加。也就是说,虽然我们可用于密钥提取的数据点数量较少,但其余点的质量也可能很高,这样就可以提取出更多的密钥位。这已在理论上得到证明,方法是将 NLA 视为一个概率性的、但无噪声的黑匣子,其中成功概率的上限为 1 /g 2,其中 g 是放大增益 [16]。当我们将上述理想的 NLA 替换为提供类似 NLA 功能的现实系统时,情况可能会大不相同。
量子信息的基本单位是量子比特,它是一个双态系统。然而,大自然却使用四个字母的字母表来表示可以说是最重要的信息存储系统——DNA。尽管我们仍不清楚为何进化会形成四个字母的系统 1 ,但它的存在可能给我们一个启示,那就是我们还应该寻找比量子比特更复杂的系统。事实上,在量子通信中,基于更大字母表的协议具有某些优势:更高的信息容量和更强的抗噪能力,这对于应用来说非常重要 2 , 3 。在对大自然的基本检验中,例如违反局部现实理论,高维系统具有优势,因为它们允许的检测效率低于量子比特 4 。有多种物理系统允许对高维量子信息进行编码。这些系统涵盖了里德堡原子、捕获离子 5 、极性分子 6 、冷原子集合 7、8 、由超导相量子形成的人造原子 9 ,以及固态 10 或光子系统中的缺陷。在光子系统中,有两种完全不同的信息编码方法。连续变量 11、12 量子信息处理方法基于相干态或压缩态,而离散变量方法基于单光子福克态。连续变量和离散变量方法在光子数
为了成功,这个过程需要一种非常特殊的资源光学纠缠,即所谓的离散变量量子比特和连续变量薛定谔猫量子比特之间的“混合纠缠态”。为了实现贝尔态测量,混合纠缠的单光子部分被用来干扰输入量子比特,然后进行增强的单光子检测。为了验证,输出量子比特的特征是通过一种称为“量子断层扫描”的过程来计算输入和输出量子比特之间的保真度,这是一种评估过程质量的典型方法。对于任何输入量子比特,都确认了高于经典极限的转换。
完成本模块后,学生将能够: - 理解原子量子存储器并比较各种存储方案,包括光腔分析。 - 描述、用统计描述计算并参考单光子实验在实验室中演示光学检测方面。 - 组装和实现 Rb 的磁光阱并讨论其在量子现象中的应用。 - 总结光量子信息中的连续和离散变量编码。 - 描述量子密钥分发并计算光量子信息的贝尔不等式协议。 - 将超导电路描述为量子比特,量子点描述为量子比特,并将它们与原子进行对比。 - 解释宏观量子振荡器的物理学。
在不同类型的量子硬件之间传输量子信息对于集成量子技术至关重要。具体而言,在连续变量 (CV) 和离散变量 (DV) 设备之间转换信息可以实现量子网络、量子传感、量子机器学习和量子计算等众多应用。本文讨论了 CV 编码信息在 CV 和 DV 设备之间的传输。我们提出了一种资源高效的方法来编码 CV 状态并在 DV 设备上实现 CV 门,以及两种基于测量的协议,用于在 CV 和 DV 设备之间传输 CV 状态。传输协议的成功概率取决于测量结果,可以通过向 DV 设备添加辅助量子位将其提高到接近确定的值。
通道位置查找是确定背景通道集合中单个目标通道位置的任务。它有许多潜在的应用,包括量子传感、量子读取和量子光谱。特别是,它可以允许将简单的检测协议扩展到测量协议,例如,使用量子照明进行目标测距。在此类协议中使用量子态和纠缠已证明比最佳经典协议具有量子优势。在这里,我们考虑使用平均每个模式最多一个光子的源进行量子通道位置查找,使用离散变量形式。通过考虑各种量子源,通过推导性能界限可以证明可以实现量子增强。