脱落酸 (ABA) 对种子休眠的控制已得到广泛研究,但其潜在机制尚未完全了解。本文,我们报告了拟南芥 (Arabidopsis thaliana) 中两种与 ABA 相关的种子休眠调节剂的特征:ODR1(用于逆转 rdo5),水稻 (Oryza sativa) 种子休眠 4 (Sdr4) 的直系同源物,以及碱性螺旋-环-螺旋转录因子 bHLH57。ODR1 的转录水平直接受到转录因子 ABA INSENSITIVE3 (ABI3) 的抑制,它通过影响 ABA 生物合成和 ABA 信号传导来负向调节种子休眠。相比之下,bHLH57 通过诱导基因 9-CIS-EPOXYCAROTENOID DIOXYGENASE6 ( NCED6 ) 和 NCED9 的表达来正向调节种子休眠,这两个基因编码 ABA 生物合成酶,从而导致更高的 ABA 水平。ODR1 与 bHLH57 相互作用并抑制 bHLH57 调节的 NCED6 和 NCED9 在细胞核中的表达。bhlh57 功能丧失等位基因可以部分抵消 odr1 突变体中增强的 NCED6 和 NCED9 表达,因此可以挽救它们相关的超休眠表型。因此,我们确定了一个新颖的 ABI3-ODR1-bHLH57-NCED6/9 网络,该网络为了解 ABA 生物合成和信号传导对种子休眠的调节提供了见解。
摘要:花生(Arachis hypogaea L.)是一种全球重要的油籽和豆科粮食作物。然而,最常见的西班牙束状花生品种缺乏鲜种子休眠(FSD),这对花生的产量和质量造成了重大障碍。鉴于其经济意义,目前正在研究模型系统中导致 FSD 的机制和因素,这对花生栽培具有重要意义。最近的评论强调了在揭示遗传控制、分子机制以及影响不同植物物种发芽和休眠的生理和环境因素方面取得的显著进展。在此背景下,我们研究了有关花生 FSD 的最新研究成果,重点关注与 FSD 相关的遗传因素。此外,我们还探讨了旨在培育优良基因型以加强花生改良的尝试。
怀孕期间的产前超声检查显示出正常的胎儿发育。此外,患者的肾功能正常和血压正常。在妊娠29周时,超声揭示了最深的垂直口袋10厘米的多氢化物。在妊娠33周时,膜和子宫收缩不经常发生过早破裂。然后,进行了紧急的下部CS,并输送了一个重2200克的单个活雌性胎儿。由于呼吸窘迫,该婴儿被送入新生儿重症监护病房(NICU),并接受了补充氧气治疗,最初是通过连续的阳性气道压力(CPAP)持续一天,然后再进行鼻氧。婴儿由专门的肾脏科医生评估,其肾脏和一般检查的结果正常。因此,她出院并跟进,表现出正常的发展里程碑。请求并获得适当的书面知情同意书,并获得了本案报告的个人医学信息。
1)Abe F.等。(2019)基因组编辑的三重衰退突变改变了小麦的种子休眠状态。细胞报告28,1362-1369。2)Cong L.等。(2013)使用CRISPR/CAS9系统的多重基因组工程。科学339,819-823。3)Ito Y.等。(2017)RIN突变的重新进化和RIN在诱导番茄成熟诱导中的作用。自然工厂3,866-874。4)Jinek M.等。(2012)适应性细菌免疫中可编程的双RNA引导的DNA核酸内切酶。科学337,816-821。5)Jinek M.等。(2013)人类细胞中的RNA编程基因组编辑。Elife 2,E00471。6)Mali P.等。(2013)通过CAS9通过RNA引导的人类基因组工程。科学339,823-826。7)Yasumoto S.等。(2020)通过农业感染通过短暂的talen表达在四倍体马铃薯中靶向基因组编辑。植物生物技术37,205-211。
III类过氧化物酶(POD)在各种发育过程中以及对生物和非生物胁迫的响应中发挥关键功能。然而,III类POD基因在小麦种子休眠(SD)和发芽中的特定作用仍然难以捉摸。在这里,我们根据转录组数据和表达分析确定了一个名为Taper12-3a的小麦III类POD基因。taper12-3a分别通过SD采集和释放显示出降低和增加的表达趋势,表明与SD和发芽有显着关联。它在小麦种子中高度表达,并位于内质网和细胞质中。发芽测试表明,锥度12-3a在第411条背景下用甲烷硫酸乙酯(EMS)的小麦突变体进行了负调节的SD,以及在转基因拟南芥和水稻线以及小麦突变体中呈阳性介导的发芽。进一步的研究表明,锥形12-3a通过与gibberellin和脱甲酸生物合成,分解代谢和转基因水稻种子中的信号通路来调节SD和发芽。这些发现不仅为调节小麦SD和发芽的锥形12-3a的未来功能分析提供了新的见解,而且还有助于理解这些过程中涉及的复杂调节机制。
我们已为六倍体普通小麦品种“Fielder”建立了高质量的染色体水平基因组组装,Fielder 是美国软质白色糕点型小麦,于 1974 年推出,以易受农杆菌介导的转化和基因组编辑而闻名。使用 HiFi 方法的 PacBio 环状共识测序获得了准确的长读序列。使用 hifiasm 组装器组装的 16 个 SMRT 细胞的序列读数产生了 N50 大于 20 Mb 的组装体。我们使用 Omni-C 染色体构象捕获技术将重叠群排序为染色体水平组装体,得到 21 个伪分子,累计大小为 14.7,未锚定重叠群为 0.3 Gb。对含有已编辑的种子休眠基因 TaQsd1 的转基因小麦植物的已发表短读段进行定位,确定了转基因插入小麦染色体的四个位置。在伪分子中检测向导 RNA 序列为脱靶突变诱导提供了候选。这些结果证明了使用 PacBio HiFi 读段进行染色体规模组装的效率及其在小麦基因组编辑研究中的应用。
总结绿色革命是基于gibberellin(GA)激素系统的遗传修饰,其基因突变降低了GA信号,赋予了较短的身材,从而使植物适应现代农业条件。具有较短身材的强大GA相关突变体通常会降低鞘总序长度,因此由于干旱条件下的幼苗出现而产生的折现收益率增长。在这里,我们将Gibberellin(GA)3-氧化酶1(GA3OX1)作为大麦的替代半弱基因,它结合了植物高度的最佳降低,而无需限制了红细胞和幼苗的生长。使用大型大麦加入收集的大型领域试验,我们表明天然的Ga3ox1单倍型将植物高度适中降低5-10厘米。我们使用了CRISPR/CAS9技术,生成了几种新型GA3OX1突变体,并验证了GA3OX1的功能。我们表明,改变的GA3OX1活性改变了活性GA同工型的水平,因此,鞘总成长度平均增加了8.2 mm,这可以提供必不可少的适应性以在气候变化下保持产量。我们透露,CRISPR/CAS9诱导的GA3OX1突变将种子休眠增加到理想水平,这可能会使麦芽产业有益。我们得出的结论是,选择HVGA3OX1等位基因为开发具有最佳身材,更长的鞘翅目和其他农艺特征的大麦品种提供了新的机会。
驯化是一个动态且持续的过程,通过选择理想的农作物特征来将野生物种转化为栽培物种,以满足人类的需求,例如口味、产量、储存和栽培方法。人类的植物驯化始于大约 12,000 年前的新月沃地,并传播到世界各地,包括中国、中美洲、安第斯山脉和近大洋洲、撒哈拉以南非洲和北美东部。印度河流域文明在豆科植物的驯化中发挥了重要作用。木豆、黑豆、绿豆、扁豆、蛾豆和马豆等作物起源于印度次大陆,新石器时代的考古记录表明这些作物最早是由该地区的早期文明驯化的。野生祖先驯化并进化为当今的优良品种,对全球粮食供应和农作物改良做出了重要贡献。此外,食用豆科植物通过保护人类健康和最大限度地减少气候变化影响,为粮食安全做出了贡献。在驯化过程中,豆科作物物种经历了严重的遗传多样性丧失,品种中仅保留了非常狭窄的变异范围。在种子传播和跨大陆移动过程中,遗传多样性进一步减少。一般来说,只有少数性状在整个物种的驯化过程中具有突出地位,例如抗碎裂性、种子休眠丧失、茎生长行为、开花-成熟期和产量性状。因此,识别和了解驯化反应位点通常有助于加速新物种的驯化。导致驯化结果发生重大改变的基因和代谢途径可能有助于新作物的快速驯化。此外,“组学”科学、基因编辑技术和功能分析的最新进展将加速新作物物种的驯化和作物改良,而不会损失太多遗传多样性。在这篇评论中,我们讨论了主要粮食作物的起源、多样性中心和种子移动
驯化和作物改良 人类主导的驯化始于大约 12 000 年前的中东和新月沃地,随后传播到世界各地,包括中国、中美洲和安第斯山脉、近大洋洲、撒哈拉以南非洲和北美洲东部 [1-3]。尽管我们的标题很简单,但我们在这里尽可能区分驯化、多样化和作物改良事件,因为无论从进化还是表型角度来看,它们都是明显不同的过程 [4]。大规模调查显示,驯化植物种类涵盖约 160 个分类科,超过 2500 个物种经历了一定程度的驯化,约 300 个物种得到了完全驯化 [2、3、5]。目前,整合考古学、遗传学和基因组学证据的模型表明,驯化是一个多阶段过程,包括(i)开始栽培,(ii)所需等位基因频率的增加,(iii)驯化种群的形成,以及最后(iv)有意识的繁殖。尽管如此,由于存在多次驯化事件,并且驯化后与祖先物种的交换频繁,因此描绘许多物种的驯化历史非常复杂[6-8]。此外,值得注意的是,一些物种如Oryza nivara和巴西坚果是在没有驯化的情况下栽培的,并且对于与初始选择相关的遗传瓶颈已经有了深刻的分析[9]。总之,这些研究极大地增进了我们对性状进化的理解,并为驯化过程中的趋同进化和平行进化提供了相当多的见解[10]。例如,留绿基因 SGR 是一系列物种种子休眠的基础[11],番茄 (Solanum lycopersicum) 和辣椒 (Capsiscum annum) 中果实重量数量性状基因座子集映射到同一基因组区域[12],水稻 (Oryza sativa)、高粱 (Sorghum bicolor)、大麦 (Hordeum vulgare) 和小米 (Pennisetum glaucum) 的糯谷物改良性状均是由 Waxy 基因直系同源物的不同突变定义的[2]。与此相反,尽管最初认为驯化综合征经典性状的出现(如谷物种子落粒性的丧失)是平行进化的情况[13],但最近的遗传图谱研究表明,多种性状往往与非同源基因有关[14]。例如,玉米(Zea mays)的典型驯化基因 TEOSINTE BRANCHED 1(tb1)[15] 对粟的分枝影响较小[16],甚至在不同的大麦谱系中,不同的