基于各种化学和物理诱变剂的抽象突变育种会诱导并破坏非靶基因座。因此,视觉筛查需要大量人群,但是所需的植物很少见,这是识别理想突变体的进一步费用。生成的突变体由于非靶向突变而具有很高的缺陷,农艺性能差。突变技术通过靶向诱导的基因组局部病变(耕种)增强,促进了理想种质的选择。另一方面,通过CRISPR/CAS9进行编辑的基因允许将基因敲低以进行定位突变。这种方便的技术已被利用用于修饰脂肪酸剖面。在广泛的农作物中获得了高油酸遗传库存。此外,将淀粉,多乳糖和口味等不良种子成分积累的基因被拆除以提高种子质量,这有助于改善油含量并减少抗营养成分。
摘要群集定期间隔短的短质体重复序列(CRISPR)-CAS基因编辑技术,由于其轻松的操作和高效率,开放了基因组询问和基因组工程的新时代。通过这项技术,越来越多的植物物种经过了定位的基因编辑。但是,将CRISPR-CAS技术应用于药用植物仍处于早期阶段。在这里,我们回顾了CRISPR-CAS技术的研究历史,结构特征,工作机制和最新衍生物,并首次讨论了它们在药用植物中的应用。此外,我们创造性地提出了应用于药用植物基因编辑的CRISPR技术的开发方向。目的是为该技术应用于基因组功能研究,合成生物学,遗传改善和药用植物的种质创新。CRISPR-CAS有望在不久的将来彻底改变药用植物生物技术。关键词:CRISPR-CAS,基因编辑,反向遗传学,合成生物学,遗传改善,药用植物
传统育种涉及从通过自发突变和重组产生的或通过化学或辐射诱导突变和人工杂交产生的种质资源中选出优良类型。然而,到 20 世纪末,新的重组 DNA 或转基因技术通过实现跨物种基因转移,彻底改变了植物育种方法。以印度 Bt 棉花的成功为代表,它还带来了额外的责任,即通过严格的监管框架确保转基因产品的生物安全。基因组编辑已成为最新、最精确的育种工具,它允许在基因组中创建定向精确突变,而无需添加任何外来 DNA,从而使产品与自然突变无法区分。全球正在迅速采用基因组编辑技术,该技术现已成为一个价值 10 亿美元的产业。因此,必须为基因组编辑生物制定适当的政策和监管框架。
本期特刊将巩固在遗传学,进化,细胞遗传学和细胞基因组学领域内的现有信息,并概述其在植物保护中的作用。我们欢迎有关各种主题的论文,其中包括但不限于以下内容:评估遗传和细胞遗传学多样性;人口遗传结构;基因流和连通性;局部适应;保护基因组学;保护稀有和受威胁的物种;恢复遗传学;种质管理;杂交和渗入的影响;多倍体和染色体重排的作用;鱼类和吉什应用;染色质组织;转座元素的动力学;和基因组大小的进化。我们特别欢迎提交多种方法的方法,并概述了在迅速变化的世界中基因组变异对植物保护的含义。因此,该主题将成为研究人员,保护生物学家和对保护植物生物多样性感兴趣的政策制定者的重要资源。
摘要:基于 CRISPR/Cas 的基因组编辑技术可以精确操作植物基因组,彻底改变了植物科学,并使得创造具有有益特性的种质成为可能。为了应用这些技术,必须将 CRISPR/Cas 试剂递送到植物细胞中;然而,这受到组织培养挑战的限制。最近,病毒载体已用于将 CRISPR/Cas 试剂递送到植物细胞中。病毒诱导基因组编辑 (VIGE) 已成为一种强大的方法,具有多种优势,包括高编辑效率和生成无 DNA 基因编辑植物的简化过程。在这里,我们简要介绍了基于 CRISPR/Cas 的基因组编辑。然后,我们重点介绍 VIGE 系统和目前用于 CRISPR/Cas9 盒递送和基因组编辑的病毒类型。我们还重点介绍了 VIGE 在植物中的最新应用和进展。最后,我们讨论了 VIGE 在植物中的挑战和潜力。
摘要 过去二十年,作物改良的若干前沿技术得到了快速发展和应用,这些技术为选择具有更好遗传特性的改良育种系带来了速度、精度和成本效益。需要提及的几项此类技术包括准确、高效地表征不同基因库种质、高通量测序和基因分型、快速世代推进、基于现代测序的性状定位和基因发现,随后识别出优良单倍型、基因组选择、基因编辑、正向育种和多组学方法,包括更好的生物信息学工具/软件。虽然各种性状(尤其是复杂性状)的表型分析方案仍有改进空间,但上述前沿技术为提高开发具有未来性状的新品种的精度和速度提供了巨大的机会,以确保不同作物的可持续性。利用一个共同平台大规模集成和使用这些技术,为作物的可持续发展提供完美支持。
粮食和农业植物遗传资源 (PGRFA) 是指任何植物来源的遗传材料,包括生殖和无性繁殖材料,含有对粮食和农业具有实际或潜在价值的功能性遗传单位 (FAO, 2009)。因此,粮食和农业植物遗传资源包括 (i) 栽培作物品种,即目前使用的栽培品种和新开发的品种;(ii) 过时的栽培品种;(iii) 原始栽培品种 (地方品种) 和农民品种;(iv) 作物野生近缘种 (CWR),即与栽培品种相关的野生种群;(v) 野生食用植物;(vi) 杂草;以及 (vii) 育种和研究材料或特殊遗传种群(包括优良和当前育种者的品系和突变体)。虽然这些植物的脱氧核酸和其他遗传材料也被视为粮食和农业植物遗传资源,但该术语通常用于指整株植物及其繁殖体。因此,粮食和农业植物遗传资源通常在野外、农民田地和实验田中发现。它们还在基因库中得到保护,即以种质种质的形式进行迁地保护,也在它们的自然栖息地中得到保护,无论是否有刻意的保护干预。随着世界人口不断增加、气候变化的毁灭性影响、农业水资源和可耕地的减少、冲突、流行病和无数社会经济驱动因素,粮食不安全和营养不良问题在过去几年中日益恶化(粮农组织,2018、2019、2020、2021、2022 年)。健康营养饮食越来越难以负担,而越来越多的人无法获得足够的食物。不断发展的新冠疫情和俄罗斯联邦-乌克兰冲突是最近发生的两起全球事件,加剧了粮食不安全和营养不良问题,尤其是在发展中国家南部。事实上,由于粮食生产水平落后于预测,无法满足日益增长的粮食需求,消除饥饿和营养不良的努力可能无法如期实现联合国可持续发展目标(联合国大会,2015 年)中承诺的 2030 年目标。考虑到 80% 的食物都是植物性的,粮食和农业植物遗传资源对于实现粮食安全和营养的努力至关重要。1.2 粮食和农业植物遗传资源保护和利用的多边主义
花生 (Arachis hypogaea L.) 是一种重要的异源四倍体油料和食用豆科作物。中国是世界上最大的花生生产国和消费国之一。然而,花生在中国的迁移和分化背后的基因组变异仍不清楚。本文我们基于对 390 个花生种质的重新测序报告了全基因组变异图,表明花生可能分别被引入中国南部和北部,形成了两个栽培中心。选择性扫描分析强调了花生改良过程中两个亚基因组之间的不对称选择。来自华南地区的经典谱系为研究人工选择对花生基因组的影响提供了背景。全基因组关联研究确定了 22,309 个与 28 个农艺性状的显著关联,包括植物结构和油脂生物合成的候选基因。我们的研究结果揭示了花生在中国的迁移和多样性,并为花生改良提供了宝贵的基因组资源。
过量的氮会促进水稻非生产性分蘖的形成,从而降低氮利用效率 (NUE)。通过平衡氮吸收和生产性分蘖的形成来开发高 NUE 水稻品种仍然是一个长期挑战,但这两个过程如何在水稻中协调仍然难以捉摸。在这里,我们将转录因子 OsGATA8 确定为水稻氮吸收和分蘖形成的关键协调因子。OsGATA8 通过抑制铵转运蛋白基因 OsAMT3.2 的转录来负向调节氮吸收。同时,它通过抑制分蘖的负调节因子 OsTCP19 的转录来促进分蘖的形成。我们将 OsGATA8 -H 确定为高 NUE 单倍型,具有增强的氮吸收和更高比例的生产性分蘖。OsGATA8- H的地理分布及其在历史种质中的频率变化表明其适应肥沃的土壤。总体而言,这项研究为NUE的调控提供了分子和进化方面的见解,并有助于培育具有更高NUE的水稻品种。
安第斯果实在不同的发展阶段包括物种,以及其国家潜在的重要性。他们的种植通常没有技术的异质地面。这些水果的效率和竞争力的提高取决于耕种分类单元和相关物种的种质收集的发展,从而导致品种克服了限制概率。在短期内,品种优惠可以基于以参与性方法和杰出个人克隆的当地人口的选择过程。在中长期中,富含野生相对物种属性的广泛遗传基础的创造是关键。这样,使用组织培养的选择过程和大量克隆来传播不同的克隆以避免脆弱性。到目前为止,在哥伦比亚,已经组装了几种安第斯果实的集合,并表征了遗传变异性,并且已经实现了一些繁殖活动。这些是基于杂交杂交以传递果实炭疽病的耐药性,这些是lulo驯化,预料和繁殖和番茄树的预邻二。这种经验允许开发有关改进材料的遗传资源产生的提案,作为基于遗传学的生产能力的有效方法。