虽然 NASA 地球科学部 (ESD) 的主要任务是发展对地球系统的科学认识以及它如何响应人类和自然变化驱动因素,但其隐含的需求也是了解如何最好地促进 NASA 卫星任务产品和信息的使用,以直接造福社会和环境。事实上,2018 年美国国家科学、工程和医学院为 NASA 进行的十年调查“在我们不断变化的星球上蓬勃发展:太空地球观测十年战略”明确强调了卫星任务数据的巨大价值,它“使社会应用成为可能,为个人、企业、国家和世界带来了巨大价值。这类应用的广度和深度不断增长,随着它们融入人们的日常生活,成为社会必不可少的信息基础设施元素”(美国国家科学、工程和医学院,2018 年)。
摘要:中国科学院国家空间科学中心是中国空间科学的门户,统筹管理全国科学卫星任务,是中国第一颗人造卫星“东方红一号”的诞生地。在60多年的发展历程中,国家空间科学中心牵头实施了中国第一个科学驱动的航天任务“双星计划”,并陆续实施了暗物质粒子探测器(悟空号)、量子实验卫星(墨子号)、硬X射线调制望远镜(慧马号)、太极一号、空间太阳天文台(夸父号)、爱因斯坦探测器(EP)等一批国家空间科学战略优先项目一、二期科学任务。目前,我国空间科学卫星系列已经基本形成,取得了丰硕的科研成果。未来,中欧联合发射的太阳风磁层电离层链路探测器(SMILE)也将于2025年发射。此外,刚刚发布的《国家中长期空间科学发展规划(2024-2050)》是我国首部国家级规划,确定了五大科学主题。围绕这些主题展开的一系列未来科学任务,将深化人类对宇宙的科学认识。
本研究的目的是探讨人工智能中的“行动”和“代理”概念。它使用形而上学的行动和代理概念作为认识论工具来批判人工智能中的“行动”和“代理”概念。因此,在研究行动和代理本身的本质和性质,以及它们如何在人工智能语言和科学中运用时,既采用了形而上学分析,也采用了认知分析。人工智能科学和认知科学的出现,以及人工智能在无人驾驶汽车和专家系统等代理生产中的技术应用,提出了人工智能代理的道德、伦理和/或法律责任问题。这再次强调了关于行动和代理概念的哲学论述的重要性,在当代知识论述中,这些概念现在被视为自然科学认识能力范围内的现象。本文认为,人工智能系统不具备也不可能拥有自由意志和自主权,因此无法承担道德和伦理责任。因此,本文建议对人工智能的责任问题做出社会政治回应。各国或国际社会有责任制定和颁布政策,确定谁对人工智能执行的行为负责。
BOEM 信息需求:第 13817 号行政命令和相关的“确保关键矿产安全可靠供应的联邦战略”要求“……增加供应链各个层面的活动,包括勘探、采矿、浓缩、分离、合金化、回收和再加工”。后续行政命令包括 13990 号《保护公共健康和环境并恢复科学以应对气候危机,2021 年》;14017 号《美国的供应链》;以及 13953 号《解决依赖外国对手的关键矿产对国内供应链造成的威胁并支持国内采矿和加工行业》,进一步强调了政府对解决确定更多关键矿产资源需求的关注。这项研究将通过为阿拉斯加阿留申弧中含有潜在海洋矿物的目标区域提供基线和探索性海底观测来帮助实施该指令。对海山群落和底栖生态系统的科学认识将得到增强,并有助于为国家环境政策法所要求的与未来潜在租赁销售、勘探计划以及开发和生产计划相关的分析提供信息。
摘要 通用航空事故(即私人非商业航空事故)造成的人员死亡人数比美国任何其他航空类别都要多。尽管自 20 世纪初以来科学认识和技术取得了进步,但天气仍然引起人们对航空安全的担忧,而且人们对致命天气相关通用航空事故的特征知之甚少。我们使用从美国国家运输安全委员会 (NTSB) 收集的数据,对 1982 年至 2013 年期间与天气有关的致命通用航空事故进行了全面的时空分析。35% 的致命通用航空事故是天气原因或促成因素,其中 60% 发生在仪表气象条件下。致命的天气相关通用航空事故最常发生在 10 月至 4 月期间、周末、清晨和傍晚时分,以及西海岸、科罗拉多落基山脉、阿巴拉契亚山脉和东北部。自 20 世纪 80 年代以来,与天气有关的通用航空事故和死亡人数长期减少;尽管如此,这些事故每年仍造成美国近 100 人死亡。这项研究为飞行员、学者、联邦航空管理局、国家运输安全委员会和其他航空组织提供了信息,以推进旨在减少美国未来航空相关事故的缓解措施。
引言马豆 (Macrotyloma uniflorum (Lam.) Verdc.) 是一种耐寒的半干旱热带豆类作物,对其研究甚少。尽管马豆在印度很大一部分人口的饮食中具有当前和历史重要性,但人们对它存在着根深蒂固的偏见,因为它被认为是穷人的低等食物,尤其是在印度南部 (Kadam 等人,1985 年;Ambasta,1986 年)。对这种作物的科学认识有限,这从教科书中对其地位的描述中可以看出,即使是在其主要生产国印度出版的教科书中也是如此。马豆的研究远少于地位较高的豆类,如印度豇豆 (V. radiata (L.) Wilczek、V. mungo (L.) Hepper) 或木豆 (Cajanus cajan (L.) Millsp)。事实上,虽然印度豇豆属和木豆的野生近缘种都曾接受过专题研究 (Tomooka 等人, . 2014;Khoury 等人 2015;Mallikarjuna 等人 2011)以及与野生近缘种关系的遗传学研究(Aruna 等人 2009;Kassa 等人 2012;Saxena 等人 2014)。直到最近才对马豆进行了小规模的遗传学研究(Sharma 等人 2015)。马豆之所以得名,是因为它几个世纪以来一直被用作马和牛的饲料(Watt 1889-1893),而英国人或地位较高的印度人很少食用它;
本文致力于研究智能电网对能源可持续和环境发展的贡献。本文的核心类别是智能电网,它指的是用于能源生产、分配和消费的自动化和增强环境监测和控制的“智能”技术。智能电网首先包括广泛的电信基础设施,可提供对能源效率和其他能源特性的高精度和连续测量。其次,能源公司自己使用的“智能”技术。最初,智能电网的创建是为了提高能源经济的效率并优化其流量,以确保所有经济实体都能获得能源资源。在现阶段,率先创建智能电网的先进能源经济体已全面实施了初始任务并取得了突出的成就,包括节能和大规模电力供应,全面覆盖商业建筑和家庭。这提出了两个研究问题。RQ1:智能电网的未来发展前景如何? Amir 等人 (2022)、Gaji ć 等人 (2022)、Sudhakar 和 Kumar (2022)、Tabar 等人 (2022) 的研究中提供了大量关于其对环境有益的证据,这使我们能够假设智能电网可以促进“清洁” (可再生) 能源的发展。RQ2:如何实现这些前景并将智能电网的成功经验扩展到其他国家?要回答这个问题,有必要系统化和分析智能电网发展的因素,并为管理这些因素形成科学基础。本文的目的是研究智能电网对能源经济可持续和生态发展的贡献,以及借助管理机制增加这一贡献的前景。本文对文献的贡献在于形成了对智能电网的新科学认识,揭示了其对能源经济可持续和环保发展的贡献。因此,本文建立了一个方法框架,通过智能电网的发展,不仅可以持续实现能源效率、能源充足性和能源连续性,还可以实现能源经济的可持续性和环保性。这扩展了智能电网的现有概念,并允许在环境经济和管理的实际方面更灵活地使用它。