当前的研究表明,具有强大的计算思维背景的高技能和积极进取的学生,他们寻求机会利用其在这个时代推动创新和成功的专业知识。这些研究还表明,学生的计算思维能力差异很大,具体取决于教育资源,课程重点和个人才能。尽管如此,人们越来越认识到培养这些技能的重要性,并正在努力将它们更全面地整合到全球的教育系统中,包括在印度尼西亚和日本,成为发展中国家和发达国家的代表。因此,评估这两个国家的计算思维能力将很有趣。采用描述性定性研究方法来描述印度尼西亚和日本学生的计算思维能力。学生工作表,专门为此目的而设计的,用于使用Scratch应用程序在学习过程中评估这些能力的发展。结果表明,学生采用了各种策略来解决给定的几何问题。另一方面,几何形状是可以使用此应用程序识别学生的计算思维的数学主题之一。这些发现用于对学生在两国的计算思维技能进行分类,并确定学生在提高这些技能方面遇到的潜在障碍。尽管如此,这些约束提供了对潜在的未来研究和增强领域的重要见解。随后的努力可以通过实施特定的学习方法或方法来确定在提高学生的计算思维能力方面有效的方法来确定进行实验。这项研究不仅强调了扩大学生计算思维技能研究的潜力,而且还概述了学习过程,学习文化以及学生使用其计算思维技能的分层难度水平解决几何问题的能力。
摘要。脑电图 (EEG) 记录经常受到肌电图 (EMG) 伪影的污染,尤其是在运动过程中记录时。现有的去除 EMG 伪影的方法包括独立成分分析 (ICA) 和其他高阶统计方法。然而,这些方法不能有效地去除大多数 EMG 伪影。在这里,我们提出了一种改进的 ICA 模型来去除 EEG 中的 EMG 伪影,称为通过添加 EMG 源去除 EMG (ERASE)。在这种新方法中,将来自颈部和头部肌肉的真实 EMG 的额外通道(参考伪影)作为 ICA 的输入添加,以便将 EMG 伪影的大部分功率“强制”到几个独立成分 (IC) 中。使用自动程序识别和拒绝包含 EMG 伪影的 IC(“伪影 IC”)。首先使用模拟和实验记录的 EEG 和 EMG 验证 ERASE。仿真结果表明,ERASE 从 EEG 中去除 EMG 伪影的效果显著优于传统 ICA。此外,它的假阳性率低,灵敏度高。随后,研究人员收集了 8 名健康参与者移动双手时的 EEG 数据,以测试该方法的实际效果。结果表明,ERASE 成功去除了 EMG 伪影(使用真实 EMG 作为参考伪影时,平均可去除约 75% 的 EMG 伪影),同时保留了与运动相关的预期 EEG 特征。我们还使用模拟 EMG 作为参考伪影测试了 ERASE 程序(约 63% 的 EMG 伪影被去除)。与传统 ICA 相比,ERASE 从 EEG 中去除的 EMG 伪影平均多 26%。这些发现表明,ERASE 可以显著分离 EEG 信号和 EMG 伪影,而不会丢失底层 EEG 特征。这些结果表明,使用额外的真实或模拟 EMG 源可以提高 ICA 在去除 EMG 伪影方面的有效性。
脑电图 (EEG) 记录经常会受到肌电图 (EMG) 伪影的污染,尤其是在运动期间记录时。现有的去除 EMG 伪影的方法包括独立成分分析 (ICA) 和其他高阶统计方法。然而,这些方法不能有效去除大多数 EMG 伪影。在这里,我们提出了一种改进的 ICA 模型来去除 EEG 中的 EMG 伪影,这称为通过添加 EMG 源去除 EMG (ERASE)。在这种新方法中,来自颈部和头部肌肉的真实 EMG 的额外通道(参考伪影)被添加作为 ICA 的输入,以便将 EMG 伪影的大部分功率“强制”到几个独立成分 (IC) 中。使用自动程序识别和拒绝包含 EMG 伪影的 IC(“伪影 IC”)。首先使用模拟和实验记录的 EEG 和 EMG 验证 ERASE。模拟结果表明,ERASE 比传统 ICA 更有效地从 EEG 中去除 EMG 伪影。此外,它的假阳性率低,灵敏度高。随后,在 8 名健康参与者移动双手时收集了他们的 EEG,以测试该方法的实际效果。结果表明,ERASE 成功去除了 EMG 伪影(平均而言,当使用真实 EMG 作为参考伪影时,大约 75% 的 EMG 伪影被去除),同时保留了与运动相关的预期 EEG 特征。我们还使用模拟 EMG 作为参考伪影测试了 ERASE 程序(大约 63% 的 EMG 伪影被去除)。与传统 ICA 相比,ERASE 从 EEG 中去除的 EMG 伪影平均多 26%。这些发现表明,ERASE 可以实现 EEG 信号和 EMG 伪影的显著分离,而不会丢失底层的 EEG 特征。这些结果表明,使用额外的真实或模拟 EMG 源可以提高 ICA 从 EEG 中去除 EMG 伪影的有效性。结合自动化 IC 伪影剔除,ERASE 还可最大程度地减少潜在的用户偏差。未来的工作将侧重于改进 ERASE,使其也可用于实时应用。