在空气网络中实现特权访问管理(PAM),通过在通过散发空调本身提供的隔离之上添加另一层保护,从而增强了安全性。即使它们为网络攻击提供了高效的障碍,但空调网络也不能免疫目标攻击。实际上,许多空间网络可能已经隐藏在系统中的恶意软件,直到威胁参与者确定执行有效载荷的正确时机为止。
摘要:电子封装领域迫切需要具有树脂基体的高性能复合材料,因为它们具有低介电常数、出色的耐高温性、优异的耐腐蚀性、重量轻和易于成型等特点。在本文中,为了改变邻苯二甲腈的介电性能,制备了空心玻璃微球 (HGM) 填充的氟化邻苯二甲腈 (PBDP) 复合材料,其填料含量范围为 0 至 35.0 vol.%。扫描电子显微镜 (SEM) 观察表明改性 HGM 颗粒均匀分散在基质中。PBDP/27.5HGM-NH 2 复合材料在 12 GHz 时表现出 1.85 的低介电常数。含有硅烷化 HGM 填料的复合材料的 5% 热重温度 (T5) (481-486 ◦ C) 高于最低封装材料要求 (450 ◦ C)。此外,PBDP/HGM-NH 2 复合材料的耐热指数 (T HRI) 高达 268 ◦ C。PBDP/HGM-NH 2 复合材料的储能模量在 400 ◦ C 时显著增加至 1283 MPa,与 PBDP 邻苯二甲腈树脂 (857 MPa) 相比增加了 50%。本复合材料的优异介电性能和热性能可为电子封装和能源系统热管理的全面应用铺平道路。
碳基中空结构纳米材料由于其独特的结构、优异的理化性质和良好的应用前景,成为中空结构纳米材料研究和开发的热点领域之一,新型碳基中空结构纳米材料的设计与合成具有重大的科学意义和广泛的应用价值。综述了近年来碳基中空结构纳米材料的合成、结构、功能化及其相关应用的研究进展,简要介绍了碳基中空结构纳米材料的基本合成策略,详细描述了碳基中空结构纳米材料的结构设计、材料功能化和主要应用。最后,讨论了当前碳基中空结构纳米材料合成与应用面临的挑战与机遇。关键词:中空结构;碳基纳米材料;制备方法
在后一种情况下。这些能量分散机制不仅对催化的量子效率具有深远的影响 - 显然对储能应用至关重要,而且对反应的催化转换率也具有最重要的意义。6给定光催化剂 - 猝灭剂组合的淬火和松弛之间的分馏用于光催化反应发育中的机械询问,以识别或确认哪些分子物种与兴奋的光催化剂相关。一种常见的技术是发光淬火(船尾– Volmer)分析,该分析测量了给定淬火物种的PC*淬火率,这是其浓度与辐射衰减过程竞争的函数。7实际上,该技术已经发现了提供机械洞察力的应用,并且最近已将其作为一种高通量筛选技术,用于发现新型的合成有机转化。8,9
完整作者列表: Maruyama, Jun;大阪工业技术研究所,环境技术研究部 Maruyama, Shohei;大阪工业技术研究所, Kashiwagi, Yukiyasu;大阪市立技术研究所, Watanabe, Mitsuru;大阪工业技术研究所,电子材料研究部 Shinagawa, Tsutomu;大阪工业技术研究所,电子材料研究部 Nagaoka, Toru;大阪工业技术研究所,材料科学与工程研究部 Tamai, Toshiyuki;大阪工业技术研究所,森之宫中心 Ryu, Naoya;熊本工业研究所,材料开发部 Matsuo, Koichi;广岛大学 Ohwada, Mao;东北大学,先进材料多学科研究中心 Chida, Koki;东北大学, Yoshii, Takeharu;东北大学,先进材料多学科研究中心 Nishihara, Hirotomo;东北大学先进材料多学科研究中心 Tani, Fumito;九州大学材料化学与工程研究所 Uyama, Hiroshi;大阪大学,
中空碳材料因其独特的多孔结构和电性能被视为催化和电化学储能中重要的支撑材料。本文以铟基有机骨架InOF-1为骨架,在惰性氩气下通过纳米氧化铟与碳基质的氧化还原反应形成铟颗粒。具体地说,通过在脱羧过程中结合铟的熔融和去除,原位获得了一种多孔中空碳纳米管(HCNS)。合成的HCNS具有更多的电荷活性位点以及短而快的电子和离子传输通道,以其独特的内部空腔和管壁上相互连通的多孔结构,成为碘等电化学活性物质的优良载体。此外,组装的锌碘电池(ZIBs)在1 A g -1 时提供234.1 mAh g -1 的高容量,这确保了电解质中碘物质的吸附和溶解达到快速平衡。基于HCNS的ZIBs的倍率性能和循环性能得到大幅提升,表现出优异的容量保持率,并表现出比典型的单向碳纳米管更好的电化学交换容量,使HCNS成为新一代高性能电池的理想正极材料。
多孔碳材料在许多用于存储和转换的电化学设备中具有非常重要的意义。因此,对具有改进的化学和结构特性的新碳材料的设计越来越感兴趣,从而增强其电化学性能,从而提供高能量和功率密度以及长期的循环性。为了满足这一要求,研究人员正在不断寻找满足上述验证的新型碳材料。在这方面,碳纳米球(CNSS)引起了极大的关注,因为除了碳材料的典型特征外,它们具有短的扩散途径,可提供快速动力学,这是先进的电化学能源系统的重要特征。本综述总结了用于生产非空心碳纳米球的合成策略,包括基于硬使用的方法(例如二氧化硅)或软(例如表面活性剂)模板以及无模板的程序,涉及聚合物纳米球的产生及其转化为CNSS和多孔碳纳米球(PCNSS)。此外,在储能设备(例如超级电池,电池)中使用CNSS和PCNS作为电极(例如碱,锂硫等。)或锂离子电容器以及用于能量转化的ORR电催化剂。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要:空心线圈电流互感器是数字化变电站建设中的关键设备,但与传统的电磁式电流互感器相比,其更容易受到各种故障的影响。为了了解各种参数对空心线圈电流互感器性能的影响,该文利用最大信息系数法研究了这些因素的影响,并分析了影响因素对互感器误差的干扰机理。最后,采用Stacking模型融合算法对互感器误差进行预测。开发的基础模型由深度学习、集成学习和传统学习算法组成。与门控循环单元和极端梯度提升算法相比,本文提出的基于Stacking模型融合算法的预测模型具有更高的准确性和可靠性,有助于提高未来数字化变电站的性能和安全性。