在这个例子中,AI 检测到实际室温低于设定点(太冷),送风流量为零,尽管送风挡板 100% 打开。哦,它不比人类聪明。是的,我们需要人类编写程序来告诉我们检查。在什么时候?这个错误报告给了空调工程师。任何读过这篇文章的人可能也会发现这个缺点。但使用人工智能最重要的优势是,你编写的程序只需要执行一次。它会一直这样进行故障检测,永不停歇,永不疲倦。永远不会感到无聊,每天都要与建筑物中的数千台 VAV 箱一起工作。当检测到故障时,AI 还可以进行故障诊断,例如导致故障的原因。在这个例子中,从皮托管到压力传感器的压力测量管松动,导致压力读数为零。VAV 箱也会将空气流量视为零。起初,AI 对此并不擅长,不知道错误是什么。但我们人类逐渐教会 AI,如果它遇到此数据的错误,那应该是由此引起的。如果数据出现这种错误,很可能是因为AI的记忆力超强,它不会忘记,而是不断积累知识。不断进步随着时间的推移,AI再次发现了同样的错误。可以诊断错误已更正可以说出导致错误的原因以及如何修复它。自动故障检测和诊断(AFDD)将发挥作用。肯定更多的是空调工程
摘要 - 在本文中,ORC热效率提高了22.54%,ORC利用率增加了22.79%,而ORC的Exergetic效率则增加了HMB设计的22.78%。Author has analysis to change the specification of Feed Pump, and additional Preheater, result analysis, when increasing n-pentane flow rate and saturation temperature, the heat (Q) flowing into the reinjection well decreased from 52502.9 kW to 23488.17 kW, and exergy destruction decreased from 28536 kW to 20427 kW where this exergy injected into the reinjection well, means that some energy and exergy has been在流入重新注入系统之前使用。在涡轮机上,总功率(W涡轮机)增加了25.40%,总功率修改为17418 kW,从总功率为13890 kW,并增加净功率15102 kW和12050 kW。在ACHE中,将热量(Q)从76030 kW增加到96633 kW,需要冷却N-戊烷,增加热量(Q),然后增加功率风扇电动机14.66%,而空气流量从218798 ACFM增加到218798 ACFM,从218798 ACFM增加到294442 ACFM,需要冷却n-浓度。进料泵的功率从1215 kW增加到31.69%至1600 kW,这是因为叶轮直径的变化会导致流量增加,压力和运动功率需要旋转泵。在恢复器上的工作减少(Q)47.93%,这是因为加热N-戊烷达到饱和温度,这是由于存在额外的预热器而辅助的。
容量 (Eurovent) 制冷 kW 247.0 275.0 301.5 327.0 标称输入 (Eurovent) 制冷 kW 79.2 87.3 94.2 103.8 容量级数 % 12.5 - 100 EER 3.12 3.15 3.2 3.15 ESEER 3.99 3.89 4.01 4.04 尺寸 高 x 宽 x 深 mm 2,340x2,235x3,140 2,340x2,235x4,040 重量 机器重量 kg 2,866 3,186 3,286 3,366 运行重量 kg 2,959 3,299 3,399 3,530 水热交换器蒸发器类型管壳式水量 l 93 113 164 水流量 最小 l/min 373 489 495 537 标称 l/min 708 788 864 937 最大 l/min 1,180 1,546 1,565 1,697 标称水压降 冷却 kPa 36.0 26.0 30.5 空气热交换器 类型 槽管和 ALU 涂层百叶窗翅片 风扇 标称空气流量 m³/min 1,338 1,836 1,782 速度 rpm 900 压缩机 类型 半封闭单螺杆压缩机 型号 数量 2 声功率 冷却 dBA 96.8 97.2 操作范围 水侧最小~最大 °C -8~15 空气侧最小~最大 °CDB -18 (OPLA)~48 制冷剂回路 制冷剂类型 R-134a制冷剂充注量 kg 80 100 110 电路数 2 电源 3~/400V/50Hz 管道连接 蒸发器进水口/出水口 4" 蒸发器排水口 1/2" 气体
对任何应用程序进行更深入的研究将揭示系统是否由于温度变化,由于零部件的应用或两者而引起的油量变化而呼吸。在选择呼吸器时,了解应用程序的流量可能是最重要的考虑因素。适当的空气流对于系统的运行和关键组件至关重要。需要不受限制地发生气流。如果气流通过呼吸器有限制,空气将发现较小的阻力遵循的路径。很容易想到系统中的油数越多,其空气流量就越多。但是,许多干燥的呼吸器不仅在系统呼吸时可操作。作为系统的闲置系统,或者是在正常运行期间不交换大量空气的系统,二氧化硅仍与其连接到的组件的头部空间接触。由于二氧化硅凝胶的吸湿性,这种恒定的连接使二氧化硅可以从组件储层中潮湿的头部空间中去除水分,从而防止其凝结并重新进入油。油量越大,头部空间可能越大。MH液压药及其在中东的CRC可以帮助您的设备尺寸大小。总而言之,在任何液压或润滑系统中,顶空管理至关重要,最好的解决方案是使用有效的干燥呼吸器,与消除与设备故障和维修相关的石油污染或成本所花费的钱相比,它价格便宜。本文由定期监测油质,具有过滤系统和干燥剂呼吸器将是维持液压或润滑系统的理想方式。在本文中提到的建议,例如使用工具通过使用有效的干燥呼吸器来监测油质,油过滤和头部空间管理,将通过减少设备的停机时间和提高生产率来帮助运营和维护团队。
Div>高温(47°F)BTU/H 12500 19000 24600 CPSC2 IV*BTU/WH 10 9.5 10 9.5低热量17°F标称容量12100 15000电路15 20 25最小值A 15 20 25最大融合15 25最大融合15 25 25 35 25 35 35 PH-V-HZ电源208/230 V,Monophase,60 Hz dimensions,60 Hz dimensions(60 Hz dimensions)(60 Hz dimensions(6) 27.56x17.72x7,87 34.65x28,53x8,27 43x30x外部31.69 x 12.99 x 12.99 x 21.81 35.04 x 13.46 x 13.46 x 26.5 37.24 x 16.14 x 16.14 x 16.14 x 31.89空气流量529.41/450.00/370.59 775.47/693.06/434.88外部1,324 1,324 1.765 2.235声音水平(高/中/低)DB(A)内部40/31.5/31.5/31.5/31.5/31.5 40/37.5 40/37.5/35/35/35/40/40/35.5外部56 56 56 56 56 56 56 56 56 56 56 56 56 58 62.5 41.62 R410A/65.26 R410A/91.71 PI PI制冷剂预紧25 25 25 25每只脚OZ 0.16 0.16 0.16 0.16 0.16 0.32 FRESHING液体侧/气侧MM(拇指)1/4&1/2 1/2 1/2 1/4&1/2 1/2 3/8&5/8高度最高。/最大长度。pi 33/82 66/98 82/164
摘要 - 空中交通管理(ATM)系统的需求增加和复杂性需要在自动化方面取得重大进步,以确保安全和效率。人工知识(AI)和机器学习(ML)正在成为管理这种日益复杂性的有希望的解决方案,提供了增强的决策和预测能力。但是,ML模型在ATM中的有效性在很大程度上依赖于广泛的高质量数据的可用性。在许多情况下,此类数据是稀缺或不完整的,这为训练强大的模型带来了主要障碍。合成数据生成(SDG)是解决此问题的可行解决方案,从而可以创建解锁ML值求主的现实数据集。终端操纵区域(TMA)是空域的关键部分,其特征是交通密度高和轨迹类型,需要颗粒状数据才能准确地对这些情况进行建模。这项工作的主要研究目标是调查时机在产生合成的4维飞机着陆轨迹方面的适用性,能够捕获该空域中的交通模式,从而有助于分析空域约束并延迟传播。根据数据多样性,保真度和实用性评估了所得的合成轨迹。研究期间确定的主要挑战是数据类别的不平衡,这影响了模型准确捕获数据模式的能力,尤其是在较不频繁的情况下。这项工作证明了时刻在产生多种现实的轨迹方面的能力,这些轨迹难以与实际历史数据区分开。基于单独的分组生成合成数据显示了解决这些不平衡的希望,尽管这种方法对组的名称敏感。关键字 - 空气流量管理,深层生成模型,生成对抗网络,多元时间序列序列,合成数据质量评估
摘要 - 强化学习(RL)正在迅速成为空中交通管理和控制(ATM/ATC)中的主要研究方向。许多国际财团和个人作品都探索了其对不同ATC和U空间 / Urban Aircraft系统交通管理(UTM)任务的适用性,例如合并交通流,成功的水平有所不同。但是,迄今为止,还没有比较这些RL技术的共同基础,许多研究方从头开始构建自己的模拟器和场景。这可能会降低这项研究的价值,因为算法的性能无法轻易验证,也不能与其他实现相比。从长远来看,这会阻碍发展。体育馆图书馆显示了其他研究领域的库,可以通过提供一组标准化环境来解决,这些环境可用于测试不同的算法,并将它们与基准结果进行比较。本文提出了Bluesky-gym:为航空域提供类似的测试环境的库,建立在现有的开源空中交通模拟器Bluesky上。当前的Bluesky-Gym环境从垂直下降环境到静态障碍物和交通流量的合并。建立在体育馆API和Bluesky空中交通模拟器上,为ATC特定的RL性能基准提供了开源解决方案。在Bluesky-Gym的初始发布中,提出了7个功能环境。本文提出了PPO,SAC,DDPG和TD3的初步实验。结果表明,在所有环境中都具有默认超参数的所有环境。在某些环境中,出现较大的性能差距,并且在政策PPO上经常落后,但总的来说,没有明确的算法在总奖励方面超过了其他人的表现。关键字 - 空气流量管理(ATM),增强学习,自动化,基准测试,人工智能
应用 基于微控制器的新型 DIGITAL MICROFLAT 系列控制器是 DIGITAL MICROFLAT “N” 系列的演进,专门设计用于控制非永久性运行应用中的气体燃料(燃烧回路中有或没有风扇)、液体或固体燃烧器。这些系统配有非易失性或易失性锁定装置,在第一种情况下,只能通过手动重置系统才能从安全锁定状态重新启动控制器,而在第二种情况下,只能通过中断电源并随后恢复电源(而不是通过切换加热需求设备)才能从安全锁定状态重新启动控制器。本系列的自动控制器适用于: - 组合式、加热式、蒸汽锅炉; - 热风发生器; - 辐射管加热器; - 风扇辅助对流加热器; - 热水器; - 高压清洗机; - 熔炉; - 一体式燃烧器; - 预混、生物质燃烧器或装饰性壁炉。全新数字 MICROFLAT 系列保留了之前 MICROFLAT 和数字 MICROFLAT 系列的主要功能和可靠性,此外还配备了与控制无线设备、无刷电机、气压和空气流量相关的配件,以及与驱动辅助电机、直流阀、调节阀相关的选项,其中包括新型 Brahma 阀类型 VCMxx(带或不带压力控制)。此外,该系列还可用于使用液体(油)或固体燃料(生物质)的设备。基于微控制器的技术的灵活性为安装时间和操作模式创造了不同的可能性。本系列系统适用于符合 EN746-2、EN676、EN525、EN1020 和 EN1319 标准的燃气燃烧器、符合 DIN4794 标准第 2 部分(1980 年 12 月版,涉及热风发生器,仅适用于 TW=20s 和 TS=5s 版本)的燃油燃烧器或符合 EN303-5 标准的生物质燃烧器。24V);特点 该系列的主要特点有: − 符合欧洲燃气用具指令 2009/142/EC 的 EC 型式认证(CE PIN 0476CQ0671); − 符合 EN298:2012(自动燃气和燃油燃烧器控制系统和火焰检测的欧洲标准)和 EN60730-2-5(带 C 类软件的自动控制的欧洲标准); − 基于微控制器的技术,可实现精确且可重复的安装时间,两个独立的安全触点用于驱动阀门; − 可以驱动 Brahma 调节阀 VCMxx 和 VCMxx *S 型(带压力传感器的电动阀); − 可以通过高压调制电路或桥式整流器(集成)驱动第一个直流阀; − 输出可用于控制第二级(间歇先导系统)、控制辅助风扇或用作常开辅助触点(此触点未通过加强隔离与主电源电压隔离,因此不适合控制 SELV 电路 - 安全超低压,例如
危险 1.1 范围 L100 气泡管液位系统由完全独立的仪器组成,只需连接到空气或气体供应、浸管和电源即可提供精确的液位指示。由于只有固定浸管和吹扫气体与液体接触,因此这些系统非常适合涉及危险场所或开放式储罐中的严格液体的应用,包括高腐蚀性、粘稠性、热(熔融金属)、爆炸性、泥浆类型或食品。此外,L100 的电子输出与几乎所有模拟仪器兼容,包括本地和远程指示器、计算机、数据记录器、记录器和控制器。1.2 功能描述 在 L100 气泡管液位系统中,通过测量将气体压入液面下方某一点所需的压力来测量通风容器中的液位。这种方法允许在液体不进入管道或仪器的情况下进行液位测量。压力调节器和恒流调节器相结合,为浸入罐中固定距离的气泡管建立一致的清洁空气或气体流。流量被调节到非常低的水平,在气泡管末端建立压力。此后,通过气泡通过液体逸出,压力保持在此值。测量液位的变化导致气体压力增加或下降。然后此时使用集成式 P200 测量背压并传输与液位或体积成比例的电信号。L100 气泡管液位系统中的高品质、行业领先的 P/I 变送器为用户提供了成熟且公认的电子接口。由于全固态 P200 变送器通常能够达到 0.10% 的量程精度,因此整个 L100 系统可以保持 0.25% 的精度。此外,由于 NEMA 4 设计以及 P200 的 FM 和 CSA 防爆和 FM 和 CSA 本质安全认证,L100 可用于室内或室外危险区域。L100 提供多种功能,可简化气泡管技术在液位中的应用。过压释放和回流止回阀用于保护 P200,并作为每个系统的标准设备提供,以及用于读取清除流量的流量计。包括通过高压空气手动吹扫气泡管的装置,以允许用户清除气泡管中的任何障碍物。图 1 显示了 L100 系统的标示图,图 2 至图 4 给出了该技术的功能表示。请注意图 5 中管道底部的小 V 形槽,它允许空气以稳定的气流而不是间歇性的大气泡形式流出。L100 系统提供了两种可能的精确测量方法。尽管 L100 提供了非常受控的恒定气流,但以下公式和表格表明,气泡系统和水箱之间的长管道可能会出现明显的压降: P D = (K x A x L) ÷ 1000 其中: P D = 以英寸水柱为单位的压降。K = 与管道有关的系数。参见表格。A = 每小时标准立方英尺的空气流量。L = 管道长度(英尺)。
额定空气流量 (CFM) CP-M16 MERV 16 CP-M15 MERV 15 CP-M12 MERV 12 介质面积 (平方英尺) 24 x 24 x 36 23-3/8 x 23-3/8 x 36 08 500 2000 0.26 0.23 0.10 105 24 x 24 x 36 23-3/8 x 23-3/8 x 36 06 500 2000 0.33 0.30 0.13 82 24 x 24 x 29 23-3/8 x 23-3/8 x 29 10 500 2000 0.25 0.23 0.10 107 24 x 24 x 29 23-3/8 x 23-3/8 x 29 08 500 2000 0.33 0.29 0.12 88 24 x 24 x 29 23-3/8 x 23-3/8 x 29 06 500 2000 0.40 0.36 0.16 68 24 x 24 x 22 23-3/8 x 23-3/8 x 22 10 500 2000 0.35 0.31 0.13 79 24 x 24 x 22 23-3/8 x 23-3/8 x 22 08 500 2000 0.43 0.39 0.17 64 24 x 24 x 22 23-3/8 x 23-3/8 x 22 06 500 2000 0.55 0.49 0.21 50 24 x 24 x 18 23-3/8 x 23-3/8 x 18 10 500 2000 0.43 0.39 0.17 64 24 x 24 x 18 23-3/8 x 23-3/8 x 18 08 500 2000 0.51 0.46 0.20 53 24 x 24 x 18 23-3/8 x 23-3/8 x 18 06 500 2000 0.67 0.60 0.26 41 24 x 24 x 15 23-3/8 x 23-3/8 x 15 10 375 1400 0.35 0.32 0.14 54 24 x 24 x 15 23-3/8 x 23-3/8 x 15 08 375 1400 0.43 0.39 0.17 44 24 x 24 x 15 23-3/8 x 23-3/8 x 15 06 375 1400 0.56 0.51 0.22 34 24 x 24 x 12 23-3/8 x 23-3/8 x 12 10 375 1400 0.44 0.40 0.17 43 24 x 24 x 12 23-3/8 x 23-3/8 x 12 08 375 1400 0.55 0.49 0.21 35 24 x 24 x 12 23-3/8 x 23-3/8 x 12 06 375 1400 0.71 0.64 0.27 27 24 x 20 x 22 23-3/8 x 19-3/8 x 22 05 500 1670 0.67 0.60 0.26 42 24 x 12 x 36 23-3/8 x 11-3/8 x 36 04 500 1000 0.26 0.24 0.10 52 24 x 12 x 29 23-3/8 x 11-3/8 x 29 04 500 1000 0.31 0.28 0.12 44 24 x 12 x 22 23-3/8 x 11-3/8 x 22 04 500 1000 0.43 0.39 0.17 32 24 x 12 x 22 23-3/8 x 11-3/8 x 22 03 500 1000 0.55 0.49 0.21 25 24 x 12 x 18 23-3/8 x 11-3/8 x 18 04 500 1000 0.52 0.47 0.20 26 24 x 12 x 15 23-3/8 x 11-3/8 x 15 04 375 750 0.47 0.42 0.18 22 24 x 12 x 12 23-3/8 x 11-3/8 x 12 04 375 750 0.60 0.54 0.23 17 20 x 24 x 22 19-3/8 x 23-3/8 x 22 06 500 1670 0.67 0.60 0.26 42 20 x 24 x 18 19-3/8 x 23-3/8 x 18 06 500 1670 0.31 0.28 0.12 35 20 x 20 x 22 19-3/8 x 19-3/8 x 22 06 500 1400 0.31 0.28 0.12 41 20 x 20 x 22 19-3/8 x 19-3/8 x 22 05 500 1400 0.25 0.23 0.10 35 20 x 20 x 12 19-3/8 x 19-3/8 x 12 06 375 1050 0.30 0.27 0.31 22 20 x 20 x 12 19-3/8 x 19-3/8 x 12 05 375 1050 0.35 0.69 0.41 19