分析数字图像的方法多种多样。这些方法使得数字图像可以作为医学 [2, 3]、技术 [4, 5]、技术视觉系统 [6]、人工智能系统 [7] 和人类活动的各个领域 [8-12] 的信息来源。这种分析不仅可以分析原始图像,还可以获取附加信息。然后,主要信息和附加信息可以帮助您做出正确的决定。例如,对于医学来说,这是对疾病的及时诊断,对于技术视觉系统来说,这是识别图像中的物体,对于人工智能系统来说,这是对机器人运动的决策。因此,图像分析方法和获取必要信息是研究人员关注的重点。
由于卫星部件尺寸和成本的减小,卫星的使用范围越来越广。因此,一些规模较小的组织已经有能力部署卫星,并在卫星上运行各种数据密集型应用程序。一种流行的应用是图像分析,用于检测陆地、冰、云等。用于地球观测。然而,部署在卫星上的设备的资源受限性质为这种资源密集型应用带来了额外的挑战。在本文中,我们介绍了为该卫星构建图像处理单元 (IPU) 的工作和经验教训。我们首先强调基于部署卫星对在轨卫星图像进行机器学习的资源限制,包括所需的延迟、功率预算和推动这种解决方案需求的网络带宽限制。然后,我们研究了各种边缘设备(比较 CPU、GPU、TPU 和 VPU)在卫星上进行基于深度学习的图像处理的性能。我们的目标是确定在工作负载发生变化时具有灵活性的设备,同时满足卫星的功率和延迟限制。我们的结果表明,ASIC 和 GPU 等硬件加速器对于满足延迟要求至关重要。但是,带有 GPU 的最先进的边缘设备可能会消耗过多的功率,无法部署在卫星上。
oneatlas basemap是一个高度准确,精心策划的全球卫星图像参考层,可在现成。由空中客车专家策划的新鲜,高级质量图像确保一致,完整且几乎无云的覆盖范围,并在连续图像之间模仿雾度和季节性差异。Oneatlas BaseMap为任务/项目计划,更改检测,映射/路线更新和功能提取提供了灵活且具有成本效益的解决方案。它在基于位置的应用程序中也可以作为背景层运行良好。购买完整的全球层或仅感兴趣的领域,并通过流媒体,下载或API访问它。
均值最大熵 (MEM)4-6 和深度补偿 7 到加权最小范数 (WMN) 或 Tikhonov 正则化。根据我们的经验,由于正则化方法的性质,这些方法往往会高估假阳性率。8 先前的研究 9-11 建立了贝叶斯模型,结合皮质/头皮区域的先验信息、灵敏度归一化等,以消除头皮伪影、提高深度精度和空间分辨率以及进行多主体和多任务实验。然而,大脑功能区域的大脑解剖结构的先验空间信息从未在当前的 fNIRS 图像重建方法中得到适当使用。在本文中,我们描述了一种用于 fNIRS 图像重建的自适应融合稀疏重叠组套索 (a-FSOGL) 正则化方法。a-FSOGL 模型使用脑空间体素分组先验(例如来自基于图谱的感兴趣区域)来规范图像重建过程。为了更好地利用先验信息,我们开发了一个贝叶斯框架,通过将先验信息与适当的统计分布结合起来来解决该模型。该框架是基于先前对贝叶斯套索模型及其扩展的研究 12 – 16 建立的。我们的模型通过组合现有模型并涉及更多先验参数,将贝叶斯套索模型向前扩展了一步。在本文中,我们将首先简要回顾光学正向和逆模型的原理,然后推导出 a-FSOGL(Ba-FSOGL)的贝叶斯模型及其相关的统计属性,然后使用模拟 fNIRS 测量和实验数据演示该方法。本文的结构如下。理论部分(第 2 部分)概述了光学正向模型。在方法部分(第 3 和 4 部分),我们描述了 Ba-FSOGL 模型、模拟配置和实验数据收集。图像重建和统计推断的结果显示在第 4 部分中。 5,我们最后在第 6 节中讨论结果的发现和模型的局限性。在模拟研究中,我们重点关注前额最近邻双侧 fNIRS 探头的示例,并检查推断由基于图谱的布罗德曼区域 (BA) 分区定义的额叶和背外侧大脑区域变化的能力,然而,实验研究表明,这种方法可作为先验信息适用于任何大脑空间分区模型。
本文档为“时间数据的空间图像”提供了补充信息。文档结构如下:第 I 节讨论了用于生成飞行时间图像和时间直方图的数值算法(数值正向模型);第 II 节解释了图像(逆)检索算法;第 III 节给出了额外的实验细节;第 IV 节讨论了结构相似性指数 (SSIM) 方面的重建图像质量,重点介绍了可能影响检索算法性能的因素;第 V 节证明了我们的成像方法可以扩展到单点射频天线;最后,第 VI 节给出了 ToF 模拟和 ANN 训练的伪代码。
正射影像被广泛认为是各种专题制图应用的数据源;在欧盟 (EU),管理共同农业政策的信息系统现在通常基于数字正射影像覆盖,其标称几何质量为 1:10,000 地图比例尺当量和 1m 像素大小或更高 (Kay et al., 1997)。尽管如此,机载图像采集需要一定程度的访问,而这并不总是可行的,而所谓的“非常高分辨率”(VHR) 卫星传感器的可用性允许采集具有图像内容质量特征的数据,以满足农村地区或农业制图和监测的需求 (Petrie, 2002)。目前使用三种主要方法从 QuickBird 和 IKONOS 数据生成正射影像:严格的传感器模型(例如,Toutin 和 Cheng,2003)、使用地面控制点计算的有理多项式系数 (RPC) 方法或使用影像供应商提供的 RPC 信息。前两种
正射影像被广泛认为是各种专题制图应用的数据源;在欧盟 (EU),管理共同农业政策的信息系统目前通常基于数字正射影像覆盖,其标称几何质量为 1:10,000 地图比例尺等效和 1m 像素大小或更高 (Kay et al., 1997)。尽管如此,机载图像采集需要一定程度的访问权限,而这并不总是可行的,而所谓的“非常高分辨率”(VHR) 卫星传感器的可用性允许采集具有图像内容质量特征的数据,以满足农村地区或农业制图和监测的需求 (Petrie, 2002)。目前使用 QuickBird 和 IKONOS 数据生成正射影像的主要方法有三种:严格的传感器模型(例如,Toutin 和 Cheng,2003)、使用地面控制点计算的有理多项式系数 (RPC) 方法,或使用影像供应商提供的 RPC 信息。前两种