•可持续的微重力和空间研究平台,用于长期研究•永久船员的存在•进入空间真空•外部和内部研究•自动化,人类和机器人操作的研究•暴露于热层•高海拔和速度的地球观察•可居住的环境控制环境
讨论了在空间各个区域遇到的环境对几种工程材料的定量效应。在空间真空中,镁的升华在升高的温度下;锌和镉在普通温度下。大多数其他工程师将不受真空影响,除了略微的表面粗糙。在有机物,多硫化物,纤维素,丙烯酸酯,聚氯乙烯,新prene以及一些尼龙,多酯,环氧脂蛋白,聚氨酸酯和醇酸酯中,在真空中的温度相当低的温度下分解。聚乙烯,聚丙烯,大多数氟化合物和硅树脂在250'C以下的真空中不会显着分解。除了增塑材料外,没有明显的升华或分解,在真空中的工程临时损失显着损失。同样,在1个大气处的气密墙的墙壁逃脱也不会引起人们的关注。
重新归一化组(RG)流是识别管理低能现象的自由度的基础框架。其核心前提在于通过无视其微观细节来简化理论,同时保留其低能物理学。这种简化不可避免地减少了自由度的数量,引发了关于这种减少的量化的长期辩论。zamolodchikov的C理论[1]为这类广泛的二维量子场理论提供了第一个精确的量化,从而促进了各个时空维度的大量进步,并扩展了我们对RG流及其含义的理解。将Zamolodchikov的定理扩展到更高的维度,更不用说存在缺陷的QFT,这是一项具有挑战性的努力,导致持续的研究工作旨在阐明二维案例以外的RG流的性质[2-20]。在本文中,我们深入研究了在存在二维缺陷的情况下对RG流的研究。我们的重点仅在于块状QFT是d维欧几里得田地理论的情况,而状态是平坦的空间真空状态。在这样的配置中,缺陷和散装都可以进行RG流,从而使C理论不适用的现有类似物。尽管在两个和更高维度中存在缺陷的历史[21 - 38],但当批量和缺陷经历同时的RG流动时,量化自由度的降低仍然难以捉摸,并且很少解决[39 - 41]。相比之下,缺陷RG流具有固定的保形散装(也称为文献中的DRG)的缺陷RG流量进行了广泛的研究[42 - 54]。1关于线缺陷的RG流[64-67]及其更高维度的概括[68-70]的许多确切结果。尤其是所谓的B-理论[68,70]断言无量纲