中高能粒子传感器、单粒子翻转传感器、地磁场监测仪(FGM)、卫星表面带电电位监测仪、空间辐射环境监测仪、全球导航掩星探测器(GNOS)、电离层光度计(IPM)、广角极光成像仪(WAI)、太阳X-EUV成像仪
量子计算 算法开发和新型计算范式 使用新兴技术(量子、机器学习、HPC、...)解决工业问题 无序系统(自旋、电子、量子、涡旋和结构玻璃) 空间辐射模拟 一般计算研究(冷气体、雪崩和磁滞、单分子磁体等)
这种空间辐射 - 传感器技术提供了弹性的检测和表征太空天气危害,例如太阳耀斑。到达数据应用于分析电流和预测的太空天气现象,并确定带电颗粒在上层大气化学中的作用以及Van Allen辐射带的动力学。数据的应用包括监视高纬度的飞机的辐射环境以及地球轨道中的船员任务。
空间环境的空间环境对太空行程包含主要危害,其中包括空间辐射和微型度量,如图1所示。空间辐射主要由电子和质子,太阳颗粒事件(SPE)和银河宇宙辐射(GCR)组成。SPE是来自太阳的高能电荷颗粒的数量很高(每单位时间)的事件。它们可以源自太阳浮动部位置或与冠状质量弹出相关的冲击波。GCR由高能电荷颗粒组成,该颗粒源自大型恒星的超新星和活性银河核。它从各个方向击中月球,火星,小行星和航天器,并且总是以背景辐射为单位。GCR是由核(完全离子化原子)的原始构成的,以及来自电子和正面的较小贡献(约2%)。1具有高原子数(z> 10)和高能量(E> 100 GEV)的GCR颗粒的小但很重要的成分。1这些高原子数,高能量(HZE)离子颗粒仅占总GCR含量的1-2%,但它们与非常高的特种离子化相互作用,因此贡献了约50%的长期空间辐射剂量的长期辐射剂量。2这些GCR颗粒,
美国国家航空航天局 (NASA) 人类研究计划 (HRP) 将其研究分为 5 个要素:人为因素和行为表现 (HFBP)、探索医疗能力 (ExMC)、人类健康对策 (HHC)、研究运营和整合以及空间辐射。各要素每年与称为人体系统风险委员会 (HSRB) 的外部小组进行对接,以报告风险进展。因 HRP 风险研究计划的变化而对风险摘要内容进行的修改需要 HSRB 批准。这包括高级可交付成果或时间表的任何变化,以及影响基线 LxC 风险评级的证据和可交付成果的变化或更新。2016 年,行为健康和表现要素与航天宜居性和人为因素要素合并,创建了 HFBP 要素。 HFBP 要素包括几个涉及人为因素(即归入 HSIA 范畴的风险)和行为健康(即睡眠、行为医学 [BMed]、团队)的风险领域。2018 年,在 HHC 和空间辐射要素的合作下,增加了一种新的研究方法,以评估同时暴露于影响中枢神经系统 (CNS) 和操作相关行为和表现的航天危害的潜在协同效应;拟议的综合战略被称为 CBS(中枢神经系统/BMed/感觉运动)综合研究计划。
航空和/或航天医学 法规/航空医学标准 作战航空医学 跨国运营、合作与伙伴关系 互操作性、标准化、协调、培训 医疗后送、CBRN 伤员后送、大规模伤员后送 人员恢复/搜索与救援 (SAR) 机组资源管理 机组人员/飞行外科医生的选拔与培训(生理训练、训练/模拟、生存能力、人机性能提升) 风险管理(疲劳管理策略、高 G、高海拔、长时间出动、热应力、空间辐射、夜视镜、激光、事故调查) 感知与态势感知 预防医学与数据管理 非传统职业领域选择 医疗监测与临床指南 航天医学案例研究 航天医学的新兴和未来问题 航天医学:流行病、灾难和中断(包括 COVID-19)
北斗卫星导航系统是国家重要的空间基础设施,可为各类用户提供高精度、全天候的定位、导航和授时服务,对导航定位服务精度、信号连续性、系统可用性等有很高的要求(刘建军等,2021)。综合考虑全球覆盖范围、应用价值和成本,国际上各主要全球导航卫星系统一般采用高度20 000km左右的中圆轨道。北斗卫星轨道主要包括倾角0°和55°的中圆轨道、地球同步轨道和倾斜地球同步轨道(夏立,2021;Morley等,2016),这些轨道位于外层地球辐射带的中心或外侧。太阳活动可以诱发空间环境的动态变化和卫星异常,包括充放电效应、单粒子效应和总剂量效应等。 NOAA/SEC从1984年至1992年共记录到954次GPS在轨异常,其中大部分是由单粒子效应和充放电效应引起的。美国GPS卫星太阳能电池阵的退化速度比预想的要快。研究表明,除了粒子辐射的位移损伤外,放电效应强化的太阳能电池阵表面污染应是一个重要诱因。欧洲GIOVE-A卫星上的OBC386计算机在2012年3月的太阳风暴中受干扰的概率是正常卫星的10倍。北斗二号的992次在轨异常中,疑似由充放电和单粒子效应引起的卫星异常约占80%。可见,运行在中高轨道的卫星易受空间环境影响,但缺乏对轨道辐射环境的监测,限制了我们对空间环境分布及其变化机制的认识。通过搭载辐射环境及影响监测探测器于导航卫星上,可充分利用轨道分布均匀、卫星数量多的优势,对中高轨道空间辐射分布及扰动进行全面监测,为中高轨道空间辐射环境监测提供支撑。
空间工程与技术研究生课程有四个研究领域,涵盖空间、航空航天和地面工程解决方案开发的整个过程,旨在对空间领域的关键学科进行科学培训,例如推进、空间力学和卫星控制、热学、材料和传感器、可靠性、机载计算、成像相机技术、空间辐射、空间电子设备项目等。它还开发和研究空间领域卫星操作和项目管理的协议。该课程以硕士和博士水平授课,旨在培养高度专业的人才,以满足 INPE、国防部、空军航空航天科学和技术部 (DCTA) 研究所和空间领域公共民间组织、与国家航空航天部门相关的公司和巴西大学的需求。
2在空间中辐射效应的基础知识21 2.1空间辐射环境。。。。。。。。。。。。。。。。。。。。。。。。。21 2.1.1太阳辐射。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 2.1.2银河宇宙射线。。。。。。。。。。。。。。。。。。。。。。。。。。23 23 2.1.3被困的颗粒。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.2电子中的辐射效应。。。。。。。。。。。。。。。。。。。。。。27 27 2.2.1粒子与物质的相互作用。。。。。。。。。。。。。。。。。。。。28 2.2.1.1粒子相互作用导致直接电离。。。。。。。28 2.2.1.2核相互作用,导致间接电离。。。。。。29 2.2.2总电离剂量。。。。。。。。。。。。。。。。。。。。。。。。。。。30 2.2.3位移损坏。。。。。。。。。。。。。。。。。。。。。。。。。31 2.2.4单事件影响。。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.2.4.1无损的se。。。。。。。。。。。。。。。。。。。。33 2.2.4.2破坏性的See。。。。。。。。。。。。。。。。。。。。。。34 2.2.4.3与技术和环境条件相关的参见类型。。。。。。。。。。。。。。。。。。。。。。35 2.3空间应用的错误率确定。。。。。。。。。。。。。。。37 2.3.1辐射环境模型。。。。。。。。。。。。。。。。。。。。37 2.3.2错误率确定。。。。。。。。。。。。。。。。。。。。。。。。39
抽象空间辐射是规划长期人类太空任务的主要关注点之一。有两种主要类型的危险辐射:太阳能颗粒(SEP)和银河宇宙射线(GCR)。两者的强度和演变都取决于太阳活性。GCR活性最大。GCR的降低仅在太阳能活动后仅6-12个月才能在太阳活动之后。SEP概率和强度在太阳能最大值期间最大化,并在太阳最小值期间最小化。在这项研究中,我们将由于SEP和GCR引起的粒子环境的模型与蒙特卡洛在航天器和幻影内的辐射传播模拟。我们包括从氢到镍的28个完全离子化的GCR元素,并考虑质子和9个离子物种来对SEP辐照进行建模。我们的计算表明,飞往火星的最佳时间将以太阳能最大值启动任务,并且飞行持续时间不应超过大约4年。