我们提出了一种方法,旨在优化穿越敌方高射炮占领的飞行走廊的飞行路径。这与穿越完全或部分由此类枪支控制的空域的所有类型的飞机、导弹和无人机相关。为此,我们使用 Q 学习 - 一种强化(机器)学习 - 它试图通过重复的半随机飞行路径试验找到避开高射炮的最佳策略。Q 学习可以在不直接对高射炮进行建模的情况下产生穿越敌方火力的最佳飞行路径。仍然需要对手的反应,但这可以来自黑盒模拟、用户输入、真实数据或任何其他来源。在这里,我们使用内部工具来生成防空火力。该工具模拟由火控雷达和卡尔曼飞行路径预测滤波器引导的近防武器系统 (CIWS)。Q 学习还可以通过神经网络(即所谓的深度 Q 学习 (DQN))进行补充,以处理更复杂的问题。在这项工作中,我们使用经典 Q 学习(无神经网络)展示了一个防空炮位的亚音速飞行走廊通行结果。
对于现代世界和我们目前的文明来说,第一台可编程数字计算机的发明发生在 20 世纪 40 年代,这是一台基于数学推理的机器,这些知识和想法启发了一些科学家认真考虑构建人工智能。现代世界还知道,英国博学者艾伦图灵在 1950 年提出了决策科学、人工智能和机器解决现实世界问题的概念。第一个商用、数字和可编程机器人是由 Geroge Devol 于 1954 年制造的,人工智能研究领域成立于 1956 年夏天在达特茅斯学院举行的一次研讨会上。但现代世界并不知道人工智能 (AI) 的起源可以追溯到 8000 到 11000 年前,印度古代圣贤们创造了具有智慧或意识的人工智能神话、故事和传言。现代人工智能的种子是由古典哲学家种下的,他们试图将人类思维过程描述为符号的机械操作。这项工作最终通过知识和思想达到了顶峰,这些知识和思想关于我们今天所见证的许多技术进步已经在印度教的圣书中得到阐述,例如《罗摩衍那》、《摩诃婆罗多》、《薄伽梵歌》、《吠陀经》和《奥义书》,据信这些圣书写于 5000 至 8000 年前(公元前 3000 年 - 公元前 6000 年)。这些不仅是印度文明的神圣史诗,也是印度存在的证据。用人类存在的最古老语言“梵语”写成的古印度文本的内容从现代科学的角度来看也被视为“自然语言”。奥义书和 Advaita Siddhanta 中存在的现代科学元素以及玛雅的本质类似于现代科学意识。这种意识进一步用于理解人类的心理过程和对其进行建模的方法,为人工智能的自然语言理解领域做出贡献。吠陀概念对于有效领导和人工智能(AI)的未来是合适的,也是必要的。这个概念是将人造机器与吠陀经文中描述的意识形态结合起来,用更好的机器构建一个更美好、更智能的世界。自然语言处理具有自然语言输入和输出,可提供更好的人机界面。本文探讨了人工智能概念的起源及其在古印度文献和其他技术描述中的存在,并提供了现代科学证据;还回顾了梵语作为计算机可能的自然语言输入。
尽管这些火星车在月球和火星探索方面有着令人瞩目的记录,但它们的任务也暴露了轮式移动系统所面临的重大局限性,这阻碍了科学探索。例如,勇气号火星探测器在一个名为“特洛伊”的地方陷入一块松散的土壤中,最终因电量不足而终止任务。该地点的土壤以硫酸铁为主,内聚力很低,因此机械性能较弱,延伸至与车轮半径相当的深度。 [12] 不幸的是,这层沉积物隐藏在一层硬化程度较弱的土壤外壳之下,导致危险直到火星车嵌入土壤中才被发现。 [9] 在任务初期,勇气号的六个车轮中有一个出现故障,需要修改驾驶策略,这加大了救援难度。 [12] 机遇号探测器在穿越子午线平原随处可见的大型风成波纹时也遇到了类似的挑战。特别是,它被困在“炼狱”波纹的松散沙子中很长时间 [13](图 1 A)。
尽管这些火星车在月球和火星探索方面有着令人瞩目的记录,但它们的任务也暴露了轮式移动系统所面临的重大局限性,这阻碍了科学探索。例如,勇气号火星探测器在一个名为“特洛伊”的地方陷入一块松散的土壤中,最终因电量不足而终止任务。该地点的土壤以硫酸铁为主,内聚力很低,因此机械性能较弱,延伸至与车轮半径相当的深度。 [12] 不幸的是,这层沉积物隐藏在一层硬化程度较弱的土壤外壳之下,导致危险直到火星车嵌入土壤中才被发现。 [9] 在任务初期,勇气号的六个车轮中有一个出现故障,需要修改驾驶策略,这加大了救援难度。 [12] 机遇号火星车在穿越子午线平原随处可见的大型风成波纹时也遇到了类似的挑战。特别是,它被困在“炼狱”波纹的松散沙子中很长时间 [13](图 1 A)。最近,好奇号火星车在穿越过程中遭受了严重的车轮损坏,原因是从表面突出的棱角分明的岩石刺穿了薄薄的铝轮
高烈度地震区隧道穿越活动断层时往往会遭受严重的震害,强震作用下断层运动可分为断层运动和地震运动,二者均对隧道结构的稳定性产生重要影响。然后,开展缩比模型振动台试验,研究正断层作用下隧道柔性接头的抗震性能,设计了相似关系、边界条件、传感器布置、输入地震波和柔性接头设计等试验关键参数。试验结果表明,分段衬砌间的接头会使结构发生局部损伤而非整体损伤,且与地震运动相比,断层运动对隧道结构的损伤更为严重;正断层作用下,上盘衬砌比下盘衬砌更容易发生损伤破坏,柔性接头可以适应强震时断层的差异变形。最后,隧道衬砌的动态响应表明,隧道上部结构主要承受较强的地震荷载,而下部结构在强震下可能会发生断层运动的施加变形。因此将柔性接头分段隧道衬砌的设计方法应用于隧道结构设计中,以提高隧道结构穿越活断层时适应变形的能力。
推荐引用 推荐引用 Boyle, Colleen,《机器人总动员》、《星际穿越》、《惊奇队长》和《别抬头》中的公众焦虑》(2022 年)。学生奖学金。131。https://digitalcommons.denison.edu/studentscholarship/131
高速磁浮列车通过隧道时,隧道内会产生突变的压力,对乘客的舒适度和设备的使用寿命产生不利影响,同时会向外辐射强烈的微压波,造成隧道出口的环境噪声。本文采用基于剪应力输送k - ω湍流模型的非定常可压缩雷诺平均Navier-Stokes方程,研究在隧道壁上设置吸盘对压力波的抑制效果,并比较不同吸盘速度下的实验结果。结果表明:开启吸盘后,在吸槽附近会产生一个低压区,可以减弱初始压缩波和列车前方的高压区;瞬时列车表面压力、隧道表面压力和微压波与吸盘速度有明显的关系。例如,与无吸力情况相比,在吸力速度为50 m/s的情况下,列车表面测点H1(列车车头处)处第一次和第二次压力突变幅度分别减小10.44%和30.61%;隧道表面测点T17(隧道中部)处的压力突变幅度减小14%以上;测点M2(隧道外,距隧道出口20 m处)处的微压波幅度减小12.44%。这表明采用吸力技术可以减轻隧道气动效应。不同吸力速度下的结果可为吸力执行器的设计提供参考。
科学委员会巴里,乔纳森。埃克塞特大学人文学院病史中心。Corbellini,吉尔伯托。社会科学和人文科学,文化遗产,consiglio nazionale delle ricerche。Fantini,Bernardino。 Geneva大学的AccultéDeMédecine。 Gazzaniga,瓦伦蒂娜。 部门 罗马·拉萨皮安扎(Rome La Sapienza)的生物技术与医学外科科学生物技术和医学科学。 giaretta,Pierdaniele。 部门 帕多瓦大学哲学,社会学,教育和应用心理学的。 Gourevitch,Danielle。 巴黎的 ecole pratique des hautes eTudes(ephe)。 Mazzarello,Paolo。 部门 帕维亚大学神经科学。 Silvano,Giovanni。 部门 历史和地理科学与古代世界,帕多瓦大学。 Thiene,Gaetano。 部门 心脏,胸科和血管科学,帕多瓦大学。 van den Tweel,1月。 乌得勒支大学医学中心病理学。Fantini,Bernardino。Geneva大学的AccultéDeMédecine。 Gazzaniga,瓦伦蒂娜。 部门 罗马·拉萨皮安扎(Rome La Sapienza)的生物技术与医学外科科学生物技术和医学科学。 giaretta,Pierdaniele。 部门 帕多瓦大学哲学,社会学,教育和应用心理学的。 Gourevitch,Danielle。 巴黎的 ecole pratique des hautes eTudes(ephe)。 Mazzarello,Paolo。 部门 帕维亚大学神经科学。 Silvano,Giovanni。 部门 历史和地理科学与古代世界,帕多瓦大学。 Thiene,Gaetano。 部门 心脏,胸科和血管科学,帕多瓦大学。 van den Tweel,1月。 乌得勒支大学医学中心病理学。Geneva大学的AccultéDeMédecine。Gazzaniga,瓦伦蒂娜。 部门 罗马·拉萨皮安扎(Rome La Sapienza)的生物技术与医学外科科学生物技术和医学科学。 giaretta,Pierdaniele。 部门 帕多瓦大学哲学,社会学,教育和应用心理学的。 Gourevitch,Danielle。 巴黎的 ecole pratique des hautes eTudes(ephe)。 Mazzarello,Paolo。 部门 帕维亚大学神经科学。 Silvano,Giovanni。 部门 历史和地理科学与古代世界,帕多瓦大学。 Thiene,Gaetano。 部门 心脏,胸科和血管科学,帕多瓦大学。 van den Tweel,1月。 乌得勒支大学医学中心病理学。Gazzaniga,瓦伦蒂娜。部门罗马·拉萨皮安扎(Rome La Sapienza)的生物技术与医学外科科学生物技术和医学科学。giaretta,Pierdaniele。部门。Gourevitch,Danielle。 巴黎的 ecole pratique des hautes eTudes(ephe)。 Mazzarello,Paolo。 部门 帕维亚大学神经科学。 Silvano,Giovanni。 部门 历史和地理科学与古代世界,帕多瓦大学。 Thiene,Gaetano。 部门 心脏,胸科和血管科学,帕多瓦大学。 van den Tweel,1月。 乌得勒支大学医学中心病理学。Gourevitch,Danielle。ecole pratique des hautes eTudes(ephe)。Mazzarello,Paolo。 部门 帕维亚大学神经科学。 Silvano,Giovanni。 部门 历史和地理科学与古代世界,帕多瓦大学。 Thiene,Gaetano。 部门 心脏,胸科和血管科学,帕多瓦大学。 van den Tweel,1月。 乌得勒支大学医学中心病理学。Mazzarello,Paolo。部门帕维亚大学神经科学。Silvano,Giovanni。部门历史和地理科学与古代世界,帕多瓦大学。Thiene,Gaetano。部门心脏,胸科和血管科学,帕多瓦大学。van den Tweel,1月。乌得勒支大学医学中心病理学。
通过利用一对量子比特之间的共享纠缠,可以将量子态从一个粒子传送到另一个粒子。最近的进展揭示了量子隐形传态的内在多体泛化,与引力有着巧妙而令人惊讶的联系。具体来说,量子信息的隐形传态依赖于多体动力学,这种动力学源于与引力全息对偶的强相互作用系统;从引力的角度来看,这种量子隐形传态可以理解为通过可穿越虫洞传输信息。在这里,我们提出并分析了一种新的多体量子隐形传态机制——被称为峰值隐形传态。有趣的是,峰值隐形传态利用的量子电路类型与可穿越虫洞隐形传态完全相同,但微观起源却完全不同:它依赖于一般热动力学下局部算子的扩散,而不是引力物理。我们通过分析和数值证明了峰值尺寸隐形传态在各种物理系统中的普遍性,包括随机单元电路、Sachdev-Ye-Kitaev 模型(高温)、一维自旋链和带有弦校正的体引力理论。我们的研究结果为使用多体量子隐形传态作为强大的实验工具铺平了道路,用于 (i) 表征强关联系统中算子的尺寸分布和 (ii) 区分一般和内在引力扰乱动力学。为此,我们提供了在捕获离子和里德堡原子阵列中实现多体量子隐形传态的详细实验蓝图;分析了退相干和实验缺陷的影响。