风险较高的职业包括律师,医生,脊椎按摩师,牙医,建筑师,警官,法官,当选官员,学校校长,教授,工程师,工程师,软件开发人员,高管,科学家,国防承包商,宗教领袖,宗教领袖,企业买家,企业买家,销售和营销,工人或工会官员以及时尚或时尚或广告。
Caleb Richardson, Mark Reith and Wayne Henry Air Force Institute of Technology (AFIT), Wright-Patterson AFB, USA caleb.richardson@afit.edu mark.reith@afit.edu wayne.henry@afit.edu Abstract : In a day and age where satellite communications are more important than ever to ensure global communication, establish international military power, and support our everyday way of life, satellite security must be at the创新的最前沿。但是,窃听攻击对尚未得到充分解决的卫星通信系统构成了严重威胁。一场窃听的攻击威胁要把敏感的数据放在错误的手中,甚至危害关键任务。需要进行研究来探讨为什么防御窃听攻击至关重要,尤其是对于卫星系统至关重要。提出了解决该问题的三种潜在解决方案,以应对不同的挑战。迫切需要对窃听威胁进行现实的解决方案,以捍卫太空领域免受恶意威胁的侵害。关键字:卫星安全性,太空系统,网络安全性,窃听攻击
在使用自我产生的信号的如此称为活跃的传感器中,声纳传感器的实现比LIDAR和雷达更具挑战性,部分原因是它们有限的角度传感场。对此挑战的一种常见解决方案是扫描传感器,该传感器通过连续测量扫描角度范围。然而,扫描传感器对声纳特别概率,因为声速相对较慢和声纳头的惯性。对蝙蝠行为的研究表明,蝙蝠可以在小组飞行过程中窃听其特异性。换句话说,他们将自己的活跃声纳收集的信息与他们通过被动倾听同龄人收到的信息融合在一起。由于蝙蝠非常擅长使用声纳,因此这种行为激发了对融合积极和被动声纳是否可以解决实现声纳传感器的挑战的调查。定义了融合传感的模型,并使用数值模拟来回答同时定位和映射的测试床问题(SLAM)。模拟结果表明,当活动声纳和相关噪声的角度范围相对较小时,机器人在解决大满贯方面的性能就会得到改善。
摘要:最近,Qiu 等人提出了一种基于环签名的半量子投票方案 (International Journal of Theoretical Physics, 60: 1550–1555(2021)),其中签名者和验证者只需要用 Z 基对接收到的粒子进行测量,并对经典消息进行一些经典的简单加密/解密操作。尽管他们的方案非常高效,但它无法抵御窃听攻击和伪造攻击。本文首先提出了针对 Qiu 等人方案的窃听攻击。其次,我们展示了针对其方案的伪造攻击。为了克服 Qiu 等人协议的安全缺陷,应该考虑窃听检查技术。关键词 :电子投票方案;量子环签名;窃听攻击;伪造攻击
抽象经典,即非量词,通信包括具有多输入多输出(MIMO)通道的配置。一些相关的信号处理任务以对称方式考虑这些通道,即通过将相同的角色分配给所有通道输入,并且与所有通道输出类似。这些任务特别包括通道识别/估计和通道均衡,并与源分离紧密连接。他们最具挑战性的版本是盲人,即当接收器几乎没有关于发射信号的事先知识时。其他信号处理任务以不对称的方式考虑经典的通信通道。这尤其包括当发射器1通过主唱机向接收器1发送数据时的情况,而“入侵者”(包括接收器2)会干扰该通道以提取信息,从而执行所谓的窃听,而重新CEN-CETER 1可以瞄准检测该侵入率。上述处理的一部分
我们研究卫星和地面站之间空间链接的信息理论安全性。Quantum密钥分布(QKD)是一种完善的信息理论安全连接的方法,仅通过量子物理学定律限制了Eavesdropper无限访问渠道和技术资源的访问。但是,空间链接的QKD极具挑战性,所达到的关键率极低,而白天运行不可能。然而,鉴于轨道机械施加的限制,在自由空间中窃听的空间中窃听似乎很复杂。如果我们还排除了窃听器在发射极和接收器周围给定区域中的存在,我们可以保证他只能访问光学信号的一小部分。在此设置中,基于窃听通道模型的量子密钥不私有(直接)通信是提供信息理论安全性的有效替代方案。就像QKD一样,我们假设合法用户受到最新技术的限制,而潜在的窃听器仅受物理定律的限制:通过指定她的检测策略(Helstrom探测器),或者通过界限她的知识,或者通过孔通过漏洞信息采用最强大的策略。尽管如此,我们使用相干状态的键键键键键入,在经典的Quantum窃听通道上展示了信息理论的安全通信率(积极的无钥匙私人容量)。我们为与Micius卫星的最新实验相当的设置提供了数值结果,并将其与QKD秘密关键率的基本限制进行了比较。与QKD相比,低地球轨道卫星的排除面积小于13 m。此外,我们表明窃听通道量子无钥匙隐私对噪声和信号动态的敏感程度要少得多,而白天的操作则是可能的。
光纤基础架构对于处理从军事智能到个人信息的广泛敏感数据至关重要。近年来,这些系统对这些系统的破坏尝试增加,以及未经授权的数据拦截的风险,这对量子计算的进步加剧了[1,2]。光纤特别容易受到窃听攻击的影响,其中未经授权的光耦合技术(例如evaneScent耦合,剪切,V-Grove剪切和微宏弯曲[3,4)可用于拦截数据。监视光电水平是检测窃听攻击的一种方法,但它可能不适用于导致最小或无法检测到的功率水平下降的攻击[5]。比光学功率跟踪更复杂的技术涉及监测接收器的极化状态变化,以使窃听尝试的正常系统变化。早期工作[6]使用分布式光纤传感(DFO)引入了一个系统,该系统可以通过使用已安装的光纤电缆触摸或操纵围栏来检测签名。但是,由于纤维杂质而依赖瑞利和布里鲁因反向散射,使该溶液复合物。此外,需要高速脉冲激光器以基于反向散射脉冲延迟确定漏洞的位置,再加上二氧化双流器以滤除放大的自发噪声的要求,并以其高成本进行贡献。1a)。[7]中的工作研究了不同纤维事件的极化特征,因为在特定时间和频率窗口中极化的序列变化,通过处理Poincar´e球中的极化状态得出(请参阅图通过窃听和有害事件产生的签名是在独特的情节中视觉的,被称为瀑布,使人类安全操作员可以在视觉上区分合法和未经授权的活动。这是一种比[6]的方法更简单,更具成本效益的恶意活动检测方法。然而,由于需要分析瀑布地块的人类专家,因此基于可视化的技术具有有限的适用性和可伸缩性。为了克服现有人类依赖性解决方案的可伸缩性和成本限制,我们引入了一种使用机器学习(ML)算法来分析极化特征的新方法。本文是第一个针对三种电缆类型进行实验收集和分析包含窃听攻击以及其他潜在有害和无害事件的数据集的。我们的方法论是从正常操作条件和无害事件中分析和分析窃听和潜在有害事件的过程,从而允许潜在的大规模光网络部署。提出的方法以92.3%的精度成功地分离了签名。
窃听是不可克隆定理的结果,假设发送的四个状态 | ↑ + z ⟩ , | ↓ − z ⟩ , | ↑ + x ⟩ , | ↓ − x ⟩ 并不都是相互正交的,并且它们的生成是随机的,因此不存在