我们研究卫星和地面站之间空间链接的信息理论安全性。Quantum密钥分布(QKD)是一种完善的信息理论安全连接的方法,仅通过量子物理学定律限制了Eavesdropper无限访问渠道和技术资源的访问。但是,空间链接的QKD极具挑战性,所达到的关键率极低,而白天运行不可能。然而,鉴于轨道机械施加的限制,在自由空间中窃听的空间中窃听似乎很复杂。如果我们还排除了窃听器在发射极和接收器周围给定区域中的存在,我们可以保证他只能访问光学信号的一小部分。在此设置中,基于窃听通道模型的量子密钥不私有(直接)通信是提供信息理论安全性的有效替代方案。就像QKD一样,我们假设合法用户受到最新技术的限制,而潜在的窃听器仅受物理定律的限制:通过指定她的检测策略(Helstrom探测器),或者通过界限她的知识,或者通过孔通过漏洞信息采用最强大的策略。尽管如此,我们使用相干状态的键键键键键入,在经典的Quantum窃听通道上展示了信息理论的安全通信率(积极的无钥匙私人容量)。我们为与Micius卫星的最新实验相当的设置提供了数值结果,并将其与QKD秘密关键率的基本限制进行了比较。与QKD相比,低地球轨道卫星的排除面积小于13 m。此外,我们表明窃听通道量子无钥匙隐私对噪声和信号动态的敏感程度要少得多,而白天的操作则是可能的。
主要关键词