基于此,作者进一步构建了窄带发射,高量子效率和低效率滚动特性的天蓝色OLED。值得注意的是,基于BCZBN-3B的OLED的最大外部量子效率为42.6%,为使用二进制发射层的OLED设备设定了新的效率记录。此外,在1000 cd m -2的亮度下,该设备仍保持30.5%的效率,显示效率较小。
– 节点使用均匀(0,t u )分布从连续争用窗口中随机抽取起始时间,其中 t u 是窗口的持续时间。– 起始时间被转换到 TDMA 时间结构上,以避免在动态数据时隙之外传输。– 如果在起始时间之前接收到传入传输,则取消争用并在信道可用时重新启动
OZ Optics 提供纠缠光子源,在马赫-曾德尔干涉仪内实现一对周期性极化晶体。偏振纠缠光子对通过 2 型自发参量下转换 (SPDC) 产生。部署了多个偏振位移器 (PD) 以将光子对分离到两个输出端口,安装在前面板上,如照片所示。光子对的中心波长为 810 nm,带宽为几纳米。每个光源都配备波长稳定的泵浦激光器、可变光衰减器和温度控制器,以微调相位匹配参数,实现最佳效率。
人类脑电图 (EEG) 中刺激引起的窄带伽马振荡 (30-70 Hz) 与注意力和记忆机制有关,在自闭症、精神分裂症和阿尔茨海默病等精神健康疾病中是异常的。然而,由于 EEG 中的绝对功率随着频率的增加按照“1/f”幂律迅速下降,并且伽马波段包括线路噪声频率,这些振荡很容易受到仪器噪声的影响。先前记录刺激引起的伽马振荡的研究使用昂贵的研究级 EEG 放大器来解决这一问题。虽然低成本 EEG 放大器在主要依赖低频振荡(< 30 Hz)或稳态视觉诱发电位的脑机接口应用中已经变得流行,但它们是否也可以用于测量刺激引起的伽马振荡尚不清楚。我们使用一个低成本的开源放大器(OpenBCI)和一个传统的研究级放大器(Brain Products GmbH)记录脑电图信号,两者都连接到 OpenBCI 帽,在男性(N = 6)和女性(N = 5)受试者(22-29 岁)观看全屏静态光栅时,已知这些光栅会在部分受试者中诱发两种不同的伽马振荡:慢伽马和快伽马。虽然来自 OpenBCI 的脑电图信号噪声要大得多,但我们发现在 Brain Products 记录中表现出伽马反应的七个受试者中,六个在 OpenBCI 中也表现出伽马反应。尽管 OpenBCI 设置中存在噪声,但这些反应在 alpha(8-13 Hz)和伽马波段的光谱和时间曲线在 OpenBCI 和 Brain Products 记录之间高度相关。这些结果表明低成本放大器可能用于刺激诱发的伽马反应检测。
摘要:紫外光电探测器(UVPD)在军事和民用应用中发挥着重要作用,通常采用宽带隙半导体(WBS)作为构造模块来制造。遗憾的是,基于 WBS 的 UVPD 商业化往往受到其相对较高的制造成本的限制,因为需要使用非常复杂的生长仪器。在本文中,我们提出了一种基于具有相对较小带隙的非 WBS 硫化铅(PbS)的灵敏 UVPD。器件分析表明,由 48.5 nm PbS 纳米薄膜制成的 UVPD 对 365 nm 的紫外线照射高度敏感。具体而言,在 365 nm 照射下的响应度和特定探测率分别为 22.25 AW − 1 和 4.97 × 10 12 Jones,与大多数传统的基于 WBS 的 UVPD 相当或更好。基于 PbS 纳米薄膜的 UVPD 还表现出优异的环境稳定性。实验结果和基于技术计算机辅助设计软件的模拟证实,PbS 纳米薄膜的异常特性与相对较薄的厚度和波长相关的吸收系数有关。这些结果为窄带隙半导体在未来光电设备和系统中实现低成本敏感 UVPD 提供了机会。关键词:紫外光电探测器、窄带隙半导体、PbS、高响应度、技术计算机辅助设计 ■ 介绍
摘要——开发具有窄带和可调光谱灵敏度的高性能多光谱光电探测器具有重要意义,但迄今为止仍然极具挑战性。本文,我们报道了一种 Si Au/n 型 Si/Au 光电探测器,它不仅在紫外线而且在近红外区域都具有可调窄带灵敏度,这与受控电荷收集变窄 (CCN) 机制有关。此外,当偏压从 0.1 变为 -0.1 V 时,该器件的负响应峰可以从 365 nm 轻松调整到 605 nm,正响应峰可以从 938 nm 调制到 970 nm。特别是,当负响应峰和正响应峰分别接近紫外短波长端和近红外长波长端时,半峰全宽分别小至 92 nm 和 117 nm。器件在紫外-可见光和近红外区域的响应极性相反,使得目前的硅光电探测器在未来的多波段光电系统中具有潜在的重要意义。
电视、智能手机和平板电脑等新兴设备正成为人们日常生活的一部分。2012 年,国际电信联盟无线电通信部门 (ITU-R) 为超高清显示器推荐了一种新的色域标准,称为 BT.2020(或 Rec.2020)。[1] 采用 Rec.2020 色域可以精细地再现自然界中的几乎所有颜色,这些颜色基于红、绿、蓝 (RGB) 三原色,国际照明委员会 (CIE) 色度坐标分别为 (0.708, 0.292)、(0.170, 0.797) 和 (0.131, 0.046)。在这种需求的驱动下,开发能够显示具有极窄发射光谱带宽和高效率的单色 RGB 颜色的新型发光材料和装置是一项至关重要的挑战。有机发光二极管 (OLED) 因其广泛的研究和开发目前被视为 UHD 显示器的主流技术。[2–8] 在过去的二十年里,随着新发光机制的出现,OLED 的效率得到了显著提高,特别是磷光 [5,8,9](第二代)和热激活延迟荧光 [7,10,11](TADF,第三代),这些机制使电子到光子转换的内部量子效率达到 ≈ 100%。尽管电致发光 (EL) 效率如此之高,但大多数传统 OLED 都存在宽带发射光谱的问题,半峰全宽 (FWHM) 通常为 > 50 nm 或更宽,从而导致 EL 的色纯度低。因此,在商用 OLED 显示器中,需要使用额外的彩色滤光片来选择性地透射原色,这不可避免地会导致光提取率下降,并导致器件的外部 EL 量子效率 (EQE) 降低。从器件的功耗角度来看,这种情况也是不利的。最近,以稠合多环 π 体系为特征的多共振诱导 TADF (MR-TADF) [12–24] 材料已成为克服传统 OLED 缺点的有机发射体的新范例,引发了研究兴趣的激增。事实上,与最先进的无机 LED 和量子点 LED 的情况一样,采用有机硼 MR-TADF 发射体的 OLED 已经实现了高效的窄带 EL
注:上列隔离变压器的一部分是根据 IEC 60950“信息技术设备安全”或 IEC 61558“电力变压器、电源、电抗器和类似产品安全”制造的。它们都具有加强绝缘。过压类别、污染程度和绝缘材料组的分类可从数据表中获取。
抽象目的幽门螺杆菌感染是全球慢性胃炎的常见原因,也是发展胃恶性肿瘤的确定危险因素。预测幽门螺杆菌状况的内窥镜外观以及其诊断精度也是一个持续的研究领域。这项研究旨在建立几种粘膜特征的诊断精度,可预测幽门螺杆菌负面状态,并在内窥镜检查时为使用一个简单的预测模型。设计接受高清上胃肠道(GI)内窥镜检查而无需放大的患者。在内窥镜检查过程中,注意到存在或不存在特定的内窥镜检查结果。悉尼方案活检被用作诊断参考标准,如果采取了尿布测试。结果告知了用于产生简单诊断方法的逻辑回归模型。随后使用30例患者的同类队列对该模型进行了验证。结果招募了153名患者并完成了研究方案。活性幽门螺杆菌感染的患病率为18.3%(28/153)。简单预测模型的总体诊断准确性为80.0%,有效的幽门螺杆菌感染患者中有100%正确分类。定期安排收集静脉(RAC)的存在表现出幽门螺杆菌状态的正预测价值为90.7%,60岁以下患者的幽门螺杆菌状态上升到93.6%。结论一个简单的内窥镜模型可能是预测患者幽门螺杆菌状况的准确性,并且需要基于活检的测试。NCT02385045。RAC在胃中的存在是幽门螺杆菌阴性状态的准确预测指标,尤其是在60岁以下的患者中。试验注册号这项研究已在临床检查中注册。
摘要 - 追踪衰老,损害和最终防止严重失败的情况需要危及许多生命的严重失败。能够以连续且精细的方式监测广泛的建筑物的完整性,即具有低成本,长期和连续的测量,从经济和生活安全的角度来看,必不可少。为了满足这些需求,我们提出了一个低成本的无线传感器节点指定的,旨在在长时间的长时间内支持模态分析,并在低功耗时具有远距离连接。我们的设计使用非常具有成本效益的MEMS加速度计,并利用窄带物联网协议(NB-iot)与4G基础架构网络建立长距离连接。在任何商业或研究设备中,远程无线连接,无布置安装和多年寿命是一种独特的功能组合,而不可用。 我们详细讨论了节点的硬件体系结构和电源管理。 实验测试证明了使用17000 mAh电池或完全不中性的运行的寿命超过十年(60 mm x 120 mm)。 此外,我们验证了使用MEMS传感器的模态分析的可行性的测量精度:与基于压电传感器的高精度仪器相比,我们的传感器节点在一小部分成本和功耗下实现了0.08%的最大差异。远程无线连接,无布置安装和多年寿命是一种独特的功能组合,而不可用。我们详细讨论了节点的硬件体系结构和电源管理。实验测试证明了使用17000 mAh电池或完全不中性的运行的寿命超过十年(60 mm x 120 mm)。此外,我们验证了使用MEMS传感器的模态分析的可行性的测量精度:与基于压电传感器的高精度仪器相比,我们的传感器节点在一小部分成本和功耗下实现了0.08%的最大差异。