电子设备的正常运行可能会因系统中引入过多能量而受到干扰,无论是通过电缆传输的信号还是自由传播的高功率电磁波。由于随后发生的错误模式(如系统崩溃)很难追溯到其根本原因,因此,检测系统可以提高对关键设施中异常强场强环境的认识,从而为有效的缓解措施提供信息。我们自行设计的实验室演示器可以测量高达每米几千伏的干扰信号,根据对脉冲取平均值时低至几兆赫兹精度的频率测量,校正窄带信号中所有组件的频率响应。额外获取的元数据(如时间分辨率低至 10 纳秒的信号包络和其他测量的脉冲串特性)可用于信号取证。四通道设计可以检测传入信号的方向。边长为 19 厘米的立方体探测器可以使用电池运行 10 小时,光纤网络连接允许浏览器访问其 Web 界面。
运动伪影降低了脑电图(EEG)信号中信息质量。在这项研究中,我们开发了一种有效的方法来通过使用经验小波变换(EWT)技术来减轻脑电图信号中的运动伪像。首先,我们将EEG信号分解为称为固有模式函数(IMFS)的窄带信号。这些IMF进一步处理以抑制工件。在我们的第一种方法中,主成分分析(PCA)用于抑制这些分解的IMF中的噪声。在第二种方法中,使用方差度量识别具有嘈杂成分的IMF,然后将其删除以获得伪影抑制的脑电图信号。我们的实验是在EEG信号的公开生理学数据集上进行的,以证明我们方法在抑制运动伪像的有效性。更重要的是,基于IMF的基于IMF的方法比基于EWT-PCA的方法提供了明显更好的性能。此外,基于IMF的方法的方法比基于EWT-PCA的方法更有效。我们提出的基于IMF变量的方法达到了28.26 dB的平均信号与噪声比(𝛥 snR),并超过了用于移动伪像的现有方法。
运动伪影会降低脑电图 (EEG) 信号中的信息质量。在本研究中,我们开发了一种有效的方法,通过使用经验小波变换 (EWT) 技术来减轻 EEG 信号中的运动伪影。首先,我们将 EEG 信号分解为称为固有模式函数 (IMF) 的窄带信号。这些 IMF 经过进一步处理以抑制伪影。在我们的第一种方法中,采用主成分分析 (PCA) 来抑制这些分解后的 IMF 中的噪声。在第二种方法中,使用方差测量识别具有噪声成分的 IMF,然后将其去除以获得伪影抑制的 EEG 信号。我们的实验是在公开的 Physionet EEG 信号数据集上进行的,以证明我们的方法在抑制运动伪影方面的有效性。更重要的是,基于 IMF 方差的方法比基于 EWT-PCA 的方法提供了更好的性能。此外,基于 IMF 方差的方法在计算上比基于 EWT-PCA 的方法更有效。我们提出的基于 IMF 方差的方法实现了 28.26 dB 的平均信噪比 (𝛥 SNR),并且超越了现有的运动伪影去除方法。