玉米MON 810旨在通过引入硫化硫酸芽孢杆菌基因的一部分来编码杀虫性的Cry1ab蛋白。Following the submission of applications EFSA-GMO-RX-MON810 and EFSA-GMO- NL-2012-107, and the publication of the EFSA scientific opinions 45 , the placing on the market of maize MON 810 for food and feed uses (including pollen), excluding cultivation in the EU, was authorised by Commission Implementing Decisions 2013/649/EU and 2017/1207/EU。2022年,申请人要求欧洲委员会更新授权在玉米市场810的市场上,并提交了Dossier GMFF-2022-9450,以支持其请求。GMO小组根据第1829/2003号法规第11和23条评估了该申请,以及相关的EFSA指南。GMO小组修改了意见草案,并在适当的情况下提出并在各个部分提出了问题。GMO小组采用了该意见,该意见将在EFSA网站和EFSA杂志上发表。
对加强融合研究中的合作,尤其是演示设计(ITER的继任者)的重要性有了共同的理解。联合研究中心(JRC)及其日本合作伙伴表示同意在诸如远见,清洁能源技术,灾害风险管理,海洋和地球科学以及核保障和安全方面的问题(通过欧洲和日本原子能局(JAEA)之间的核保障和安全方面,诸如远见,清洁能源技术,海洋和地球科学以及核保障和安全方面的持续合作。欧洲研究委员会(ERC)的赠款,玛丽·斯凯洛夫斯卡·弗里(Marie Sklodowska-Curie)行动(MSCA),日本科学技术局(JST),日本医学研究与发展机构(AMED)和日本科学促进学会(JSPS)被重点彰显为促进研究人员资本发展和移动性的非常重要的工具。
版权所有©2023由电气和电子工程师协会。保留所有权利版权和重印许可:允许摘要借助来源。图书馆可以超出美国版权法的限制,以私下使用顾客在本卷中在第一页的底部携带代码的文章,前提有关其他复制,重印或重新出版许可,请写信给IEEE版权所有经理,IEEE服务中心,445 Hoes Lane,Piscataway,NJ 08854。保留所有权利。***这是IEEE数字库中显示的内容的打印表示形式。E-Media版本中固有的某些格式问题也可能出现在此打印版本中。IEEE Catalog Number: CFP23K74-POD ISBN (Print-On-Demand): 979-8-3503-9726-0 ISBN (Online): 979-8-3503-9725-3 ISSN: 2768-5322 Additional Copies of This Publication Are Available From: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA电话:(845)758-0400传真:(845)758-2633电子邮件:curran@proceedings.com网站:www.proceedings.com
这项研究旨在通过双室微生物燃料电池(DCMFC)使用胡椒废物和微藻螺旋藻SP产生生物电力。DCMFC由Cu和Zn电极构建,分别将有机废物和微藻放入阳极和阴极腔室中。另外,测量电化学参数35天。最后,分离并鉴定出可能的电源微生物。可以生成电流(6.04414±0.2145 mA)和电压(0.77328±0.213 V)的最大值。最大电导率值为134.1636±7.121 ms/cm,内部电阻值为83.784±7。147。达到的功率和电流密度的值分别为584.45±19.14 mW/cm 2和5.983 A/cm 2。最佳工作pH值为4.59±0.14。从阳极上的微生物生长,酵母Yarrowia phangngaensis(1)和假单胞菌(2)鉴定出来,这可能与电子转移到电极有关。总而言之,当胡椒浪费和螺旋藻SP。被使用。这些结果是有希望的,因为有机废物可以产生可持续和环保的能源。©2023作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
讨论承认,欧洲电池联盟一直在支持到2050年欧盟的气候中立目标进步方面发挥着关键作用,以实施2018年对电池的战略行动计划,并允许欧洲电池行业实现关键里程碑。在2022年,其中包括锂离子Gigafactories的上升到30;电池电动汽车份额的销量从21%增加到28%,在欧洲推出了几种新车型。以及最近就新欧盟电池监管的政治协议。在2022年,欧洲电池生态系统的总投资水平(目前包括沿整个价值链开发的160多个工业项目)的总投资水平超过1800亿欧元。然而,欧洲仍面临着几个结构性挑战,例如到2025年,缺乏80万名熟练工人,高能源,土地和允许成本,以及欧洲现在仅占关键电池原材料生产的1%的所在地。
001 1-4 全体演讲 1 Sung-Joon Kim 奥氏体不锈钢中间隙原子的作用:C 与 N 002 5-7 1 相变 Tadashi Furuhara 界面工程在控制钢的微观结构和性能中的应用 003 8-11 1 相变 Yasunobu Nagataki 汽车用超高强度钢板的最新研究进展 006 12-15 1 相变 Mahesh Chandra Somani 北极应用新型超高强度钢的设计和加工的最新进展 007 16-18 1 晶粒结构控制 Munekazu Ohno 包晶钢凝固过程中粗柱状奥氏体晶粒的形成 008 19-20 1 晶粒结构控制 Shuang Xia 晶界特征分布对 316L 不锈钢力学性能的影响 009 21-22 1 晶粒结构控制Toshio Ogawa 通过三维微观结构分析表征纯铁和低碳钢的再结晶行为 010 23-25 1 晶粒结构控制 YongJie Yang 取向硅钢中一次再结晶织构的发展 011 26-29 1 第二相粒子控制 Yutaka Neishi 通过控制夹杂物形态提高特殊钢棒材和线材的性能 012 30-33 1 第二相粒子控制 Ling Zhang 含 2 wt%Nb 低碳钢的力学性能 013 34-37 1 第二相粒子控制 Wei Wang 通过测量高温下晶粒生长获得 TiN 在奥氏体中的溶度积 015 38-40 2 强度和变形 1 Nobuhiro Tsuji 完全再结晶超细晶粒钢同时实现高强度和高延展性的可能性 016 41-43 2 强度与变形 1 Elena Pereloma 揭示加工参数之间的关系,铁素体高强度低合金钢的相间析出与强化 017 44-47 2 强度与变形 1 Genichi Shigesato 高韧性钢板的微观组织控制 018 48-50 2 强度与变形 1 Norimitsu Koga 时效超低碳钢的低温拉伸性能 019 51-54 2 强度与变形 1 Myeong-heom Park 不同马氏体硬度的铁素体+马氏体双相钢的局部变形行为 020 55-57 2 强度与变形 2 Noriyuki Tsuchida 从应力分配角度改善力学性能 021 58 2 强度与变形 2 Stefanus Harjo 利用脉冲中子衍射观察钢材的变形行为 022 59 2 强度与变形 2 Si Gao 晶粒尺寸对钢材拉伸性能的影响304 不锈钢的原位中子衍射研究 023 60 2 先进钢种 1 Jungho Han 提高中锰钢低温韧性的可能性搅拌摩擦焊 024 61 2 先进钢种 1 Hongliang Yi 涂层/基体界面碳富集及其对 Al-Si 涂层压淬钢弯曲性能的影响 027 62-65 2 先进钢种 1 Dirk Ponge 高强度中高锰钢中的氢脆:从基础认识到新的抗氢微观结构设计 028 66-69 3 氢脆 Young-Kook Lee 微观结构和变形对珠光体钢氢脆的影响 029 70 3 氢脆 Hong Luo 环境引起的铁基多元合金的退化 030 71-73 3 氢脆 Shusaku Takagi 氢脆评估问题 031 74-76 3 氢脆 Akinobu Shibata 马氏体钢中的氢相关裂纹扩展行为 032 77-78 3 氢脆 Tomohiko Hojo 超高强度 TRIP 辅助钢的氢脆性能评估 033 79 3 耐热钢的设计 Satoru Kobayashi 提高长期结构稳定性的铁素体耐热钢的设计 034 80 3 设计耐热钢的设计 Shigeto Yamasaki Co 添加对高铬铁素体钢蠕变强度和磁性能的影响 035 81-84 3 耐热钢的设计 Nobuaki Sekido 利用纳米 SIMS 观察耐热铁素体钢在回火过程中硼偏析的变化 036 85-88 3 耐热钢的设计 Yoshiaki Toda 提高沉淀强化铁素体钢的蠕变强度 037 89-92 3 耐热钢的评价 Masatsugu Yaguchi 长期使用条件下 91 级钢的微观结构和蠕变强度 038 93 3 耐热钢的评价 Masatoshi Mitsuhara 晶界特征对 9Cr 铁素体耐热钢中 M23C6 碳化物生长的影响 039 94-97 3 18Cr 9Ni 3Cu Nb N钢的蠕变变形行为 040 98-101 3 耐热钢的评价 张胜德 长期使用超级304H钢锅炉管的组织与力学性能
心理健康是一项艰巨的全球挑战。从经济角度来看,结合直接和间接成本,2010 年全球心理健康状况的成本估计为 2.5 万亿美元,预计到 2030 年将增长到 6 万亿美元 [Bloom 等人,2021]。在美国,自杀是 10-34 岁人群的第二大死亡原因,也是 35-54 岁人群的第四大死亡原因,全球每年有 80 万人死于自杀 [WHO,2014]。获得专业帮助的机会不足——在美国,超过 1.2 亿人生活在联邦指定的心理健康护理专业人员短缺地区 [HRSA,2021];因此,今年的研讨会主题为“改善获取途径”,旨在鼓励就该主题提交意见和进行讨论。