摘要:在石墨烯兴起后2D材料的最新成功的激增中,由于其独特的纳米级特性的结合,钼(2D-MOS 2)(2D-MOS 2)一直在基本和应用的视点中引起人们的注意。例如,2D-MOS 2的带隙从直接(以批量形式)变为超薄纤维(几层)的间接(几层),为光电子学中的各种应用提供了新的前景。在这篇综述中,我们介绍了2D-MOS 2薄膜的合成和表征范围的最新科学进步,同时着重强调了它们在能量收集,气体传感和等离子设备中的某些应用。对2D-MOS 2的物理和化学处理途径的调查首先提出,然后详细描述并列出了用于研究其有趣的光学特性的MOS 2纳米材料以及理论模拟的最相关特征技术。最后,讨论了与高质量合成和相当可控制的MOS 2薄膜有关的挑战,并将其整合到新型功能设备中。
在2023年,在西部进行了最初的高通力运动,该活动是由新安装的主动冷却的钨分流,由Iter级单块组成。该活动包括在附着的转移条件下重复60秒钟的长氘L模式脉冲,累积了超过10000秒的血浆暴露。在外部罢工点区域达到了大约5举10 26 m -2的最大氘静脉,代表了一些高性能iTer脉冲。从可见光谱中推断出的总钨侵蚀表明,最受侵蚀的等离子体面向成分是内部分流目标,其速率比外移分离目标大十倍。位于离等离子体数厘米的外部平面钨保险杠,显示出侵蚀率的侵蚀速率是外移分流的两倍。我们得出的结论是,外部平面保险杠对远程钨的迁移和沉积到下层的延长具有可忽略的贡献。内部分流器上的累积总侵蚀率以约20μm的有效总侵蚀厚度转换,而外分离器的侵蚀速率约为20μm。引人注目的是,这些订单与分流物上本地的沉积物厚度一致:高场侧单块的裸露表面覆盖着几个μm的钨沉积物,而在下部侧面,很少有μm薄钨沉积物仅在磁性阴影部分上发现单块的磁性阴影部分。尤其是研究行动的开始,应考虑分离侵蚀预算的定义,以预测有害存款的形成。这些沉积物对西部运行的强烈影响,即表面温度测量与红外热摄影的扰动以及片的发射导致受限血浆的辐射扰动,要求预测ITER中的类似问题。
图2:a)沉积在银上的J-聚集膜的石版画区的暗场显微镜图像。该图案的设计包含圆形光漂白区域(CPA),直径范围为1至40 µm。相邻漂白区域之间的最小分离距离为20 µm,可以彼此隔离。样品中重复数十倍的模式,以测试实验结果的重复性。在40 µM CPA中,我们代表激光激发和视野。b)CPA的素描被聚焦激发的中心照亮。激光激发后,QD会因刺激模式在样品平面中传播而衰减。孵化的区域对应于激发发射器的体积,我们为模拟设定了非零的化学潜力。
我们正在寻求任命一名博士后研究员,负责一项为期 36 个月的工程和物理科学研究委员会 (EPSRC) 资助项目,以探索低温等离子体在凝胶合成中的应用。凝胶是一种用途极为广泛的材料,在从食品到个人护理产品等日常用品中随处可见,也可用于药物输送和电池技术等复杂应用。该研究将重点通过开发先进的等离子体源和应用复杂的等离子体诊断技术,建立一种基于等离子体的新型软物质合成工艺。
根据Noether定理,物理系统中的对称性与保守数量交织在一起。这些对称性通常决定系统拓扑,这会随着维度的增加而变得更加复杂。准晶体既没有翻译也不具有全局旋转对称性,但它们本质上居住在一个高维空间中,在该空间中,对称性浮出水面。在这里,我们发现了拓扑电荷向量,该拓扑载体在四个维度(4D)中,这些维度(4D)控制了2D准晶体的真实空间拓扑,并揭示了其固有的保护定律。我们证明了对五边形等离子体式准乳头中拓扑的控制,并由相分辨和时间域近场显微镜绘制,表明它们的时间进化不断地调节其独特的4D拓扑的2D投影。我们的工作提供了一种实验探测4D及以上拓扑物理学的热力学特性的途径。t
介绍了一种用于在纳米表面结构上制造 TiN 纳米结构的电感耦合等离子蚀刻工艺。使用 Cl 2 /Ar/N 2 等离子体,在 SiO 2 上可实现 50 的选择性。研究了 N 2 流速对蚀刻速率和 TiN 侧壁上非挥发性残留物的影响。当 N 2 流速增加到 50 sccm 时,观察到 TiN 侧壁上非挥发性残留物的沉积发生变化。介绍了用 TiN 纳米结构侧壁制造的 TiN 器件的电流密度-电压特性。分别用低和高 N 2 流速蚀刻的两个不同样品的测量电流密度表明,仅在低 N 2 流速下,清洁后才会在侧壁上沉积一层绝缘层。VC 2015 美国真空学会。 [http://dx.doi.org/10.1116/1.4936885]
在本文中,我们提出了一种波导集成干涉传感器,其中在单个等离子体波导中传播的两种等离子体模式之间发生干涉。为了进行传感,通过增加金属电极之间的距离重新排列了垂直等离子体槽波导。因此,与每个金属电极相关的等离子体模式(通常形成混合等离子体槽模式)已被分离,使它们能够在金属电极的相对边缘上独立传播。这允许实现马赫-曾德尔干涉仪,其中光通过传统的锥形结构从光子波导耦合进出结构。值得注意的是,支持等离子体模式的金属电极也可以用作电触点。通过在它们之间施加直流电压,可以有效地分离漂移到其中一个金属电极的离子。因此,马赫-曾德尔干涉仪的一条臂会经历更高的损耗和相位积累,导致马赫-曾德尔干涉仪不平衡和传输下降。这里,透射率的任何变化仅指液体中的离子量,因为干涉仪的输出信号通过与被检查的液体溶液直接接触的参考臂标准化为液体。被检查的液体中的离子总量保持不变,但是,当施加电压时离子会向其中一个金属电极漂移,因此间隙中的离子分布会发生变化。因此,可以通过干涉仪的透射测量来监测液体中离子浓度的任何变化。所提出的配置对干涉仪两个臂之间的透射率变化高度敏感,即使在 1550 nm 的电信波长下也能实现超过 12460 nm/RIU 的创纪录灵敏度。预计中红外波长的灵敏度将进一步增强,这对应于大多数化学和生物化合物的最大吸收峰。
(每周全日制 / 40小时)在由卡罗琳·贝尔格默(Caroline Berghammer)领导的家庭和劳动力市场研究小组中,最初的3年。最多可能会延长5年。起始日期是2025年4月1日或之后尽快。我们正在寻找一位出色的博士后研究人员,以加入“在灵活的工作世界中的家庭和不平等”项目(Flin;由ERC合并赠款资助)。该项目使用国际时使用数据和其他数据源来调查家庭时间(与儿童和伴侣的时间)的灵活工作(在家中工作)的作用,并在分发夫妻付费和无偿工作中的性别平等。您的未来地位是奥地利科学学院维也纳人口研究所,该学院是维特根斯坦人口统计学与全球人力资本中心(IIASA,OEAW,VIENNA大学)的成员。您将加入一个动态的研究环境,科学家在社会科学中从事各种各样的学科。您的任务:
机械振动的色散限制了纳米光机械调制。在这项工作中,我们提出了一种利用弹性局部共振(也称为回音壁模式 (WGM))的光机械调制。我们发现我们的结构支持两个四极和两个六极弹性 WGM,它们是非色散的,以避免位移场局域在金纳米盘 (AuND) 上时产生损耗。我们通过数值证明局域表面等离子体共振 (LSPR) 和 WGM 之间的耦合与弹性模式的对称位移和 AuND 中声子模式的强隔离有关。通过计算四个 WGM 在不同变形下偶极 LSPR 的波长偏移来评估调制的幅度。对这四个 WGM 进行详细比较使我们能够确定耦合效率更高的 WGM。此外,这种同时限制产生了大的声-等离子体耦合,可用于设计具有等离子体响应的新型机械传感器,作为新型声-等离子体装置的潜在应用和创新。
在过去的几十年中,量子技术领域一直在迅速扩展,产生了许多应用,例如量子信息,量子通信和量子网络安全。在这些应用的核心上是量子发射极(QE),这是单个光子或光子对的确切可控的发电机。半导体QE,例如钙钛矿纳米晶体和半导体量子点,作为纯单个光子的发射器表现出很大的希望,当用等离子体型纳米腔杂交时,具有产生光子对的潜力。在这项研究中,我们开发了一个系统,在该系统中,可以以可控的方式与外部等离子跨表面进行交互之前,期间和之后,可以追溯到单个量子发射器及其集合。将外部等离质元面耦合到量化量阵列后,单个QES从单光子发射模式切换到多光子发射模式。值得注意的是,该方法保留了QE的化学结构和组成,使它们可以在与等离子次曲面解耦后恢复至初始状态。这显着扩大了半导体QE在量子技术中的潜在应用。
