•2024年春季会议。西雅图,华盛顿州。 氧化物中强电子相互作用和转运的精确计算。 •2024年Paul Drude Institute的Grafox研讨会。 柏林,德国。 构建量子材料的计算工具箱:电子和自旋动力学的精确第一原理计算。 •2023材料科学与工程座谈会。 哥伦比亚大学,纽约。 构建量子材料的计算工具箱:电子和自旋动力学的精确第一原理计算。 •2023第35届电子结构方法最新发展的年度研讨会。 Merced,CA。 从第一原理中的电子 - 波相互作用和自旋动力学的进步。 •2023量子铸造研讨会。 加利福尼亚州圣塔芭芭拉加州大学。 电子和自旋动力学的精确第一原理计算:构建量子材料的工具箱。 •2023 Sanibel研讨会:自旋研讨会。 佛罗里达大学,佛罗里达大学。 理论和第一原理对自旋形成相互作用和自旋松弛的计算。 •2023第二量子在材料科学研讨会中。 nist,美国(虚拟)。 量子材料中电子和自旋动力学的第一原理计算的进步。 •2023年APS 3月会议。 拉斯维加斯,内华达州。 理论和第一原理对自旋形成相互作用和自旋松弛的计算。 •2023 SIAM计算科学与工程会议。 阿姆斯特丹,荷兰。 坎昆,墨西哥。西雅图,华盛顿州。氧化物中强电子相互作用和转运的精确计算。•2024年Paul Drude Institute的Grafox研讨会。柏林,德国。构建量子材料的计算工具箱:电子和自旋动力学的精确第一原理计算。•2023材料科学与工程座谈会。哥伦比亚大学,纽约。构建量子材料的计算工具箱:电子和自旋动力学的精确第一原理计算。•2023第35届电子结构方法最新发展的年度研讨会。Merced,CA。从第一原理中的电子 - 波相互作用和自旋动力学的进步。•2023量子铸造研讨会。加利福尼亚州圣塔芭芭拉加州大学。电子和自旋动力学的精确第一原理计算:构建量子材料的工具箱。•2023 Sanibel研讨会:自旋研讨会。佛罗里达大学,佛罗里达大学。理论和第一原理对自旋形成相互作用和自旋松弛的计算。•2023第二量子在材料科学研讨会中。nist,美国(虚拟)。量子材料中电子和自旋动力学的第一原理计算的进步。•2023年APS 3月会议。拉斯维加斯,内华达州。理论和第一原理对自旋形成相互作用和自旋松弛的计算。•2023 SIAM计算科学与工程会议。阿姆斯特丹,荷兰。坎昆,墨西哥。相互作用的电子,声子和激子的非平衡动力学来自第一原理。•2023第五功能氧化物薄膜会议。第一原理计算复杂氧化物中强电子相互作用。•2022维也纳量子研讨会讲座。维也纳,奥地利。 精确和简约的计算量子物理学:从材料中的电子到量子电路。 •2022第23个亚洲第一原理电子结构计算的研讨会(全体会议)。 虚拟。 第一原理电子 - phonon相互作用的边界:弱到弱的,相关,跨性和数据驱动。 •2022苏黎世ETH苏黎世关于固体缺陷第一原理建模的研讨会。 苏黎世,瑞士。 预测由极性和缺陷控制的电子相互作用和运输。 •2022 ICTP热传输研讨会。 虚拟。 从第一原理计算电子相互作用和动力学方面的进步。 •2022 IPAM关于量子力学模型降低的研讨会。 美国加利福尼亚州洛杉矶。 精确的量子机械计算,对凝分物质中电子相互作用和动力学的计算。 •2022年春季会议。 檀香山HI,美国。 相互作用的电子,声子和激子的非平衡动力学来自第一原理。 •2022 ACS春季会议。 美国加利福尼亚州圣地亚哥。 量子材料中电子动力学的精确第一原理工具。 •2021年量子材料和设备研讨会,哈佛大学。 虚拟。 虚拟。维也纳,奥地利。精确和简约的计算量子物理学:从材料中的电子到量子电路。•2022第23个亚洲第一原理电子结构计算的研讨会(全体会议)。虚拟。第一原理电子 - phonon相互作用的边界:弱到弱的,相关,跨性和数据驱动。•2022苏黎世ETH苏黎世关于固体缺陷第一原理建模的研讨会。苏黎世,瑞士。预测由极性和缺陷控制的电子相互作用和运输。•2022 ICTP热传输研讨会。虚拟。从第一原理计算电子相互作用和动力学方面的进步。•2022 IPAM关于量子力学模型降低的研讨会。美国加利福尼亚州洛杉矶。 精确的量子机械计算,对凝分物质中电子相互作用和动力学的计算。 •2022年春季会议。 檀香山HI,美国。 相互作用的电子,声子和激子的非平衡动力学来自第一原理。 •2022 ACS春季会议。 美国加利福尼亚州圣地亚哥。 量子材料中电子动力学的精确第一原理工具。 •2021年量子材料和设备研讨会,哈佛大学。 虚拟。 虚拟。美国加利福尼亚州洛杉矶。精确的量子机械计算,对凝分物质中电子相互作用和动力学的计算。•2022年春季会议。檀香山HI,美国。相互作用的电子,声子和激子的非平衡动力学来自第一原理。•2022 ACS春季会议。美国加利福尼亚州圣地亚哥。 量子材料中电子动力学的精确第一原理工具。 •2021年量子材料和设备研讨会,哈佛大学。 虚拟。 虚拟。美国加利福尼亚州圣地亚哥。量子材料中电子动力学的精确第一原理工具。•2021年量子材料和设备研讨会,哈佛大学。虚拟。虚拟。量子材料中电子动力学的新型计算工具。•2021夫人春季会议。使用新型原理计算方法中的过渡金属氧化物中的电荷传输。•2021年APS 3月会议。虚拟。第一原理的耦合电子,声子和激子的超快动力学。•2021 Photon Science研讨会,SLAC / Stanford。虚拟。第一原理的耦合电子,声子和激子的超快动力学。•2021年伯克利激动国家会议,加州大学伯克利分校。虚拟。第一原理的耦合电子,声子和激子的超快动力学。
1918 年流感大流行期间的流行曲线显示,随着新感染人数的减少,控制措施的解除引发了多波疫情复苏 [1]。这表明,由严重急性冠状病毒 2 (SARS-CoV-2) 引起的第二波 2019 冠状病毒病 (COVID-19) 可能在 2020 年秋季出现。与流感季节的融合可能导致易感人群(如老年人和患有合并症的人)的发病率和死亡率显著上升。人们对 SARS-CoV-2 和流感病毒的共同感染,或流感疫苗和 SARS-CoV-2 疫苗之间的相互作用知之甚少。去年的流感疫苗是在 2019 年 SARS-CoV-2 大流行之前接种的,这为检验流感疫苗接种与 COVID-19 发病率和严重程度之间的关联提供了机会。如果重症 COVID-19 患者需要住院治疗、进入重症监护病房 (ICU) 或在住院期间死亡,则认为其预后更差。我们分析了 2020 年 3 月 8 日至 4 月 15 日期间在俄亥俄州和佛罗里达州克利夫兰诊所卫生系统接受 COVID-19 检测的患者 (n = 18,868) [2]。其中,我们排除了 5648 名在 2019 年之前接种过流感疫苗但在 2019 年未接种疫苗的患者,以排除与远程疫苗接种相关的偏见。在剩余的队列中,我们将 2019 年秋季或 2020 年冬季接种了无佐剂流感疫苗的 4138 名患者与从未接种过流感疫苗的 9082 名患者进行了比较 [2]。使用重叠倾向评分加权法来控制 2019 年接种和未接种流感疫苗的患者之间观察到的协变量差异。每个个体的倾向评分是使用表 1 中列出的临床特征协变量通过非简约逻辑回归模型预测的接种流感疫苗的概率。然后应用重叠倾向评分加权法直接比较感兴趣结果的加权组 [3]。所有统计分析均使用 R 版本 4.0.1(R 项目统计计算,维也纳,奥地利)进行。该队列和统计方法的详细描述此前已报告 [2]。人口统计学和临床特征如表 1 所示。与从未接种流感疫苗的人相比,2019 年接种疫苗的人年龄更大、体重指数更高、收入更高(表 1)。接种疫苗的人更有可能是女性和非西班牙裔。他们还报告了更多的合并症,需要更多的药物。两组在进行 SARS-CoV-2 检测时进行的外周血实验室测量也存在显著差异(表 1)。未调整分析显示,接种疫苗的个体 SARS-CoV-2 检测呈阳性的可能性较小(表 1)。在 SARS-CoV-2 检测呈阳性的个体中,2019 年接种过流感疫苗的患者住院的可能性更大。一旦住院,他们更有可能被送入 ICU 并在住院期间死亡。在调整后的分析中,更差的住院结果风险增加与流感疫苗接种无关。使用重叠倾向评分加权,流感疫苗接种与 SARS-CoV-2 感染的发病率无关(调整后的 OR [95% CI]:0.79 [0.62 – 1.00])。在 COVID-19 患者(n = 1434)中,接种流感疫苗(n = 309)不会影响住院风险(调整后的 OR [95% CI]:1.29 [0.72 – 2.31])、ICU 入院风险(调整后的 OR [95% CI]:0.65 [0.22 – 1.79])或医院死亡率(调整后的 OR [95% CI]:0.98 [0.39 – 2.43])。总体而言,我们的分析表明,流感疫苗接种不会增加 COVID-19 的发病率,也不会加重相关发病率或死亡率。这与现行证据一致,即流感疫苗是安全的,严重不良事件(如格林-巴利综合征)很少见 [4]。虽然我们的数据令人放心,但许多不确定因素值得进一步考虑。需要在 2020 年秋季前瞻性收集监测数据,以研究 SARS-CoV-2 和流感同时感染的结果,并评估流感疫苗(一种新开发的针对冠状病毒的疫苗)、流感和 COVID-19 感染之间的任何相互作用。流感疫苗,尤其是佐剂疫苗,对冠状病毒免疫病理学中的 Th17 免疫反应和疫苗诱导的免疫增强的影响 [ 5 ] 尚不清楚,需要密切监测。有时,流感疫苗接种或感染后产生的非中和抗体会在异源流感攻击后加剧疾病严重程度。在人类中,2008-2009 年季节性三价灭活流感疫苗与大流行性 H1N1 疾病严重程度增加有关 [ 6 , 7 ]。这可能与 2020 年秋季有关,因为新的禽类 H1N1 猪流感病毒与 2009 年大流行或医院死亡率(调整后的 OR [95% CI]: 0.98 [0.39 – 2.43])。总体而言,我们的分析表明,接种流感疫苗不会增加 COVID-19 的发病率或加剧相关发病率或死亡率。这与现行证据一致,即流感疫苗是安全的,严重不良事件(例如格林-巴利综合征)很少见 [4]。虽然我们的数据令人放心,但许多不确定因素值得进一步考虑。需要在 2020 年秋季前瞻性地收集监测数据,以研究 SARS-CoV-2 和流感同时感染的结果,并评估流感疫苗(一种新开发的针对冠状病毒的疫苗)、流感和 COVID-19 感染之间的任何相互作用。流感疫苗,尤其是佐剂疫苗对冠状病毒免疫病理学中的 Th17 免疫反应以及疫苗诱导的免疫增强作用的影响尚不清楚,需要密切监测 [ 5 ]。有时,接种流感疫苗或感染后产生的非中和抗体会在异源性流感病毒攻击后加剧疾病严重程度。在人类中,2008 - 2009 年季节性三价灭活流感疫苗与大流行性 H1N1 疾病严重程度增加有关 [ 6 , 7 ]。这可能与 2020 年秋季有关,因为新的禽类 H1N1 猪流感病毒与 2009 年大流行或医院死亡率(调整后的 OR [95% CI]: 0.98 [0.39 – 2.43])。总体而言,我们的分析表明,接种流感疫苗不会增加 COVID-19 的发病率或加剧相关发病率或死亡率。这与现行证据一致,即流感疫苗是安全的,严重不良事件(例如格林-巴利综合征)很少见 [4]。虽然我们的数据令人放心,但许多不确定因素值得进一步考虑。需要在 2020 年秋季前瞻性地收集监测数据,以研究 SARS-CoV-2 和流感同时感染的结果,并评估流感疫苗(一种新开发的针对冠状病毒的疫苗)、流感和 COVID-19 感染之间的任何相互作用。流感疫苗,尤其是佐剂疫苗对冠状病毒免疫病理学中的 Th17 免疫反应以及疫苗诱导的免疫增强作用的影响尚不清楚,需要密切监测 [ 5 ]。有时,接种流感疫苗或感染后产生的非中和抗体会在异源性流感病毒攻击后加剧疾病严重程度。在人类中,2008 - 2009 年季节性三价灭活流感疫苗与大流行性 H1N1 疾病严重程度增加有关 [ 6 , 7 ]。这可能与 2020 年秋季有关,因为新的禽类 H1N1 猪流感病毒与 2009 年大流行
计算机键盘的演变可以追溯到1868年克里斯托弗·拉瑟姆·肖尔斯(Christopher Latham Sholes)的打字机发明。雷明顿公司从1877年开始的打字机大众营销在其广泛采用中发挥了重要作用。几个技术进步,包括电视机和打孔卡系统,有助于早期计算机键盘的开发。1946年,ENIAC计算机在1946年使用了打孔器读取器,1948年BINAC计算机的机电控制打字机进一步巩固了这一连接。在1960年代引入视频显示终端(VDT)彻底改变了用户界面,使用户可以看到他们在屏幕上键入的内容。此启用了更快的数据输入,编辑和编程。通过电键盘传输的VDT的直接电子冲动可显着减少处理时间。到1970年代末和1980年代初,所有计算机都使用了电子键盘和VDT,而Qwerty布局今天从sholes的发明中继承下来,今天仍然很突出。雷明顿公司开创了打字机的质量生产,导致标准计算机键盘的发展。根据传说,Qwerty布局是由Sholes和James Densmore开发的,以克服机械局限性。原始设计通过分开通用字母组合来最大程度地减少钥匙。尽管已经发明了其他布局,例如DVorak键盘,但由于其效率和熟悉程度,Qwerty仍然是最受欢迎的。新兴的电动打字机进一步合并打字机和计算机技术。皇家伯爵之家和埃米尔·鲍多特(Emile Baudot)等发明家改进了电视机机器,是键盘技术的突破。在1930年代,新键盘结合了打字机和电报技术,从而导致了关键系统的开发,这成为了早期添加机器的基础。关键技术被纳入ENIAC等早期计算机,而后来的设计具有电力打字机和磁带输入。到1964年,麻省理工学院,贝尔实验室和通用电气之间的合作导致了Multics的开发,Multics是一个分布的计算机系统,鼓励创建用于用户界面的视频显示终端(VDTS)。在计算机中打字技术的演变始于引入电动打字机,这使用户能够在视觉上看到他们正在键入的字符,从而使文本编辑和删除更加容易。这项创新还简化了编程,并使计算机更容易访问。早期键盘是基于电视机或关键的基础,但由于电力机械步骤减慢了数据传输的速度而有局限性。VDT技术和电子键盘的出现通过允许直接电子脉冲传输并节省时间来彻底改变计算。到1970年代末和1980年代初,所有计算机都使用了电子键盘和VDT。1990年代看到了手持设备的出现,从HP95LX开始,该设备开创了移动计算。最初,手持设备具有小的Qwerty键盘,使触摸键入不切实际。随着PDA的演变为包括Web访问,电子邮件和文字处理,引入了笔输入。但是,一开始,手写识别技术还不够强大。键盘产生机器可读文本(ASCII),这对于索引和搜索至关重要。手写可生产“数字墨水”,它适用于某些应用程序,但需要更多的内存,并且不如数字键盘准确。早期PDA在商业上不可行。苹果公司于1993年发布的牛顿项目很昂贵,其笔迹认可也很差。研究人员Goldberg和Richardson开发了一种简化的系统,称为“ Unistrokes”,将字母转换为单笔票进行输入。1996年发布的棕榈飞行员引入了涂鸦技术,使用户能够输入资本和小写字符。其他非钥匙板输入包括MDTIM和JOT,但由于数据捕获的记忆力更多,而与数字键盘相比,它们具有相似的限制。计算机键盘的演变是一段漫长而有趣的旅程,跨越了近两个世纪。从带有电报机的不起眼的开端到我们今天使用的时尚,多功能设备,键盘进行了重大的转换以满足不断变化的用户需求。####早期的早期开发,电报机中使用了物理钥匙和开关来编码信息。这项技术为现代键盘奠定了基础。1800年代看到打字机和电报的进步,进一步完善了键盘设计。键盘布局继续随着发短信的兴起而继续发展,通常会利用Qwerty风格的软键盘。#### Qwerty和Qwerty布局以外的标准成为具有软键盘的标准,但是其他布局(例如Fitaly,Cubon和Opti)也存在。随着语音识别技术的提高,其功能已添加到小型设备中,但没有取代软键盘。####键盘的未来随着数据输入对于发短信和其他应用程序越来越重要,键盘设计正在调整。像KALQ键盘一样的创新,Android设备上可用的分屏布局,旨在改善拇指型体验。键盘的演变可以追溯到1868年,托马斯·休斯(Thomas Hughes)发明了用于电报的钢琴风格的键盘。早期的计算机终端出现在20世纪初期,加州海军研究人员和Konrad Zuse的可编程计算机使用旧打字机进行了修改。20世纪中叶锯键板成为计算中的主食,带有打孔机器是前体。创新在20世纪后期加速,包括IBM的Selectric打字机启发键盘设计和DEC的VT50终端,其中包含集成的键盘和屏幕。关键里程碑包括IBM PC普及了F键盘,苹果的Lisa引入了GUI和鼠标减少键盘依赖性,Microsoft的天然键盘会引发符合人体工程学设计的变化。21世纪带来了更多的多功能性和连接性,无线键盘超过了销售中的有线模型。在整个旅程中,打字仍然是输入命令和数据的有效和直观的方式,在20世纪后期推动了键盘无处不在。第一个大众市场打字机于1874年发布,将Qwerty布局固定为打字的标准。后来,IBM的Selectric(1936)引入了一种可以旋转和倾斜以打印字母的类型球,从而可以轻松更改字体。当计算机出现时,他们采用了打字机的打字机制,这些机制最终演变成专用的计算机键盘。在1950年代,打孔器被用于输入ENIAC等早期计算机的数据,这些计算机读取了用代表数据和程序说明的孔读取卡片。IBM 1050终端(1964)将打字机机制与桌子和调制解调器相结合,创建了一个集成的系统。DEC VT50(1967)带有键盘和CRT显示屏的视频终端,使用户可以在输出时看到输出。Xerox Alto(1970)介绍了图形用户界面(GUI),使用鼠标进行交互而不是文本命令,从而降低了键盘依赖性。尽管如此,键盘在个人计算中仍然很重要,尤其是在1970年代和1980年代PC进入房屋和办公室时。标准是由IBM PC的模型F键盘(1981)和Apple Lisa(1983)等有影响力的模型设定的,该模型集成了鼠标以进行图形相互作用。IBM模型M(1984)完善了PC键盘,确保了IBM PC和克隆的一致性。后来,微软引入了天然键盘(1994年),引发了人体工程学的设计趋势,而苹果简化了其iMac(1999)的简化键盘,开始向没有单独的光标垫或功能键的简约设计转变。开关测试人员有助于识别首选的机械开关。现代键盘不断发展,基于具有新功能的原始Qwerty布局。现代键盘的关键特征包括无线连接,专业,自定义,可移植性,RGB照明,集成输入和增强的键入功能。今天的键盘生态系统提供了针对特定用例的各种设计。喜欢重音字符,专门的软件从上下文定制中受益,以提高生产率。键盘配件增强了多功能性,人体工程学和样式:腕部休息会减轻压力,钥匙开关O形圈噪声噪音和自定义键盘个性化美学。人体工程学因素通过促进适当的姿势来减少键入应变:将键盘定位在肘部水平,避免弯曲手腕,将垫片用于笔记本电脑,并在长时间的课程后休息。遵循基本的人体工程学原理可以使计算机键盘长期安全使用。现在,让我们凝视着令人兴奋的键盘可能性:增强现实键盘,脑部计算机接口,智能手套键盘,触觉娱乐,灵活的电子墨水显示器,上下文自动版,无线功率和神经反馈。激进的新设计将与传统模型共存,因为核心机制已被证明是永恒的。由于其触觉效率,持久的键盘仍然是一个积分的计算机接口。我们可以以其他输入机制不切实际地将思想转变为命令和内容。早期计算机缺乏显示和鼠标,而键盘是唯一可行的界面。但是,即使出现了新的选项,键盘的生产力也会执行许多任务。计算机键盘由于其众多优势而仍然是计算中必不可少的一部分:由于它们在大多数计算机中的广泛可用性,它们熟悉,响应,多功能,生产力和无处不在。虽然语音或笔迹(如语音或笔迹)在某些情况下已成为可行的替代方案,但在键盘上打字的速度和准确性继续使其成为生产力的核心组成部分。人类与键盘之间的这种共生关系持续了近两个世纪,键盘适应和发展以适应不断变化的人类行为和技术进步。因此,键盘的设计反映了人类需求与技术能力之间正在进行的相互作用,这是无情驱动创新的缩影。