尽管在有效载荷和航程方面存在限制,货运无人机在应急物流和远程配送方面仍具有广阔的应用前景。在本研究中,我们通过开发一种高容量 3.84 kW 电池来应对这些挑战,该电池专为在苛刻地形中运行的 50 公斤有效载荷货运无人机而设计。我们专注于应急货物的运输,研究无人机设计的关键方面和电池组开发的细节,包括电池选择、内部配置以及用于电池平衡、充电/放电和高级电池管理的关键电路。一项关键创新是集成反向传播人工神经网络 (BPANN) 算法来预测放电深度 (DoD) 和充电状态 (SoC)。研究结果表明,BPANN 提供高度准确的预测,DoD 的误差百分比低至 0.12%,SoC 的误差百分比低至 0.02%,确保电池运行优化和安全。进行了全面的现场测试,以评估所提出的电池平衡策略、强大的电池管理系统 (BMS) 和 BPANN 实施的有效性。我们研究了无人机在 DoD、SoC 和使用设计的电池组的整体现场操作方面的性能,并证明了其在实际应用中的可行性和潜力。
抽象的深度学习仍然在可信度方面存在缺点,它描述了一种可理解,公平,安全和可靠的方法。为了减轻AI的潜在风险,已通过监管指南(例如,在《欧洲AI法》中)提出了与可信赖性相关的明确义务。因此,一个核心问题是可以在多大程度上实现值得信赖的深度学习。建立构成可信赖性的所描述属性要求可以追溯影响算法计算的因素,即算法实现是透明的。以这样的观察到,深度学习模型的当前演变需要改变计算技术的变化,我们得出了一个数学框架,使我们能够分析计算模型中透明的实现是否可行。我们示例地应用了我们的可信度框架,分别分析图灵和Blum-Shub-Smale机器代表的数字和模拟计算模型中的反相反问题的深度学习。基于先前的结果,我们发现Blum-Shub-Smale机器有可能在相当一般的条件下为反问题建立可信赖的求解器,而Turing Machines不能保证具有相同程度的可信度。
IST 503算法设计和分析IST 597,697研讨会:愿景(第1节)IST 597,697研讨会:代表性学习(第2节)IST 597,697研讨会:机器人学:391,691 IST 591,691职业发展培训课程IST 592 iST 592,692 598 599,699论文IST 503算法设计和分析IST 597,697研讨会:愿景(第1节)IST 597,697研讨会:代表性学习(第2节)IST 597,697研讨会:机器人学:391,691 IST 591,691职业发展培训课程IST 592 iST 592,692 598 599,699论文
抽象问题陈述:自然界中的自组织颗粒长期以来启发了结构形式。这些形式以有效地使用最小材料,并轻巧。物理模型已用于探索这些自组织粒子,并作为设计和计算的基础。然而,制作,测量和缩放这些模型是乏味的,尤其是对于复杂的几何形状,例如树状结构。如今,计算机模拟可以应用自然逻辑来创建数字模型。这些模型模拟形式调查和缩放速度更快,更容易。研究目标:这项研究的目的是提出一种数字工具,该工具源自算法设计,用于基于湿线模型的物理测试的分支结构的数字形式查找。研究方法:这项研究首先是通过研究该领域的可用资源和科学文章的研究,然后使用计算方法来设计数字工具。结论:基于湿线模型的算法设计简化了树状结构的最佳设计。它优化了设计结果和设计过程。物理形式调查通常会在将模型转换为建筑计划时面临困难。通过数字化此过程,最终形式的测量变得更快,更容易。这增强了这些形式的构造性。关键字:自组织模式,数字形式找到,算法设计,类似树状的结构。
❑理论基础和大规模AI/ML中DM的算法解决方案以及数据科学问题,包括算法设计和分析,优化和实施,使用最先进的数学技术和系统技术:
摘要 —量子计算有可能通过有效解决复杂问题而彻底改变各个领域。其核心是量子电路,即操纵量子态的量子门序列。在量子算法设计中,选择正确的量子电路假设至关重要,它定义了初始电路结构并作为优化技术的基础。本文介绍了一个分类的量子电路假设目录,旨在支持量子算法的设计和实现。每个假设都详细描述了意图、动机、适用性、电路图、实现、示例,另请参阅。提供了实际示例来说明它们在量子算法设计中的应用。该目录旨在通过提供对不同假设的优势和局限性的见解来协助量子算法设计者,从而促进特定任务的决策。索引术语 —假设、量子电路、设计模式、量子算法
6. 优化算法库:QO 后端是一个不断增长的高度优化量子算法库。该软件的用户在学习过程中不断解决有趣的数学问题,并开始提出自己的算法设计。
在实验中,程序员将使用 GitHub Copilot 完成各种编程任务:(1)算法设计;(2)计算器的前后端开发;(3)面向对象编程练习。将分析基于 AST/srcML 层次结构的眼动追踪模式和 IDE 行为模式。
