增材制造,也称为三维 (3D) 打印,是一种使用各种材料将计算机辅助设计模型转化为真实 3D 物体的过程。3D 打印提供了无与伦比的灵活性,可以逐层构建具有复杂形状和几何形状的功能部件。3D 打印已成为传统工业生产技术的可行替代方案 [1-3]。人们做出了很多努力来表征 3D 打印物体的耐久性、表面光洁度和机械性能 [4-12]。然而,人们担心 3D 打印部件在应用中会受到反复应力,这可能会导致疲劳失效 [12-16]。3D 打印革命被许多人视为将形成工业革命 4.0 的技术之一。与传统的减材制造方法相比,3D 打印可以实现更高的设计复杂性并缩短设计周期 [17-19]。 3D 打印主要分为七类:(1)粘合剂喷射、(2)粉末床熔合 (PBF)、(3)定向能量沉积、(4)材料喷射、(5)瓮聚合、(6)材料挤出和(7)片材层压 [20, 21]。根据起始材料,3D 打印还可分为液体、固体和粉末类工艺 [22]。粉末基工艺是最重要和最流行的一类 3D 打印技术 [23–28]。这种流行归因于粉末材料的高可重复使用率、更快的生产速度、功能部件坚固、成本更低、无需或只需极少的支撑结构、不同的应用领域和大量的兼容材料 [2、3、12、23–27、29–40]。 3D 打印这一新兴领域改变了许多行业的产品制造方式,它通过提供更高的设计和制造自由度以及更广泛的材料范围改变了许多行业的产品制造方式[41-45]。
•LP-DED AL6061-RAM2原料规范和验证•LP-DED过程开发和验证•微结构和机械性能表征•热火测试7k-LBF推力类别再生冷却的喷嘴•打印大型再生式示威者NONOUGHESTOR NONOKELES NONUGHESTOR notuke notazzer
摘要 为确保基于粉末的增材制造技术的经济可行性,粉末回收是一种常见的做法。本文介绍了增材制造中金属粉末的生命周期,研究了粉末制造、粉末使用、粉末降解机制和报废粉末的使用。反复使用导致粉末降解是一个普遍存在的问题;用大量重复使用的粉末生产的部件通常质量较低,最终导致粉末无法用于增材制造。粉末降解取决于许多变量,因此无法确定粉末的最终使用寿命。确定粉末质量的最准确方法是使用这些粉末生产和分析部件。文献中以前没有发现降解粉末的用途,因此有必要研究防止粉末浪费的潜在解决方案。在其他减少浪费的解决方案中,等离子球化被认为是一种有前途的方法,可以避免约 12.5% 的粉末处理,从报废粉末中产生类似于原始粉末的颗粒。将报废粉末返还给供应商进行再循环利用可能是减少行业浪费的唯一经济可行的解决方案。本文汇编的研究旨在使增材制造用户能够对粉末再循环利用进行进一步的研究和开发。
摘要:由于污染和降低成本的因素,废料的再利用最近变得越来越有吸引力。使用废料可以减少环境污染和产品成本,从而促进可持续发展。大约 95% 的含碳酸钙废蛋壳最终未被利用而被填埋。这些蛋壳是一种生物废物,在转化为 CaO 后可以重新用作各种应用的催化电极材料,包括超级电容器。同样,如果回收不当,使用过的废电池电极材料也会对环境造成危害。各种类型的电池,特别是锂离子电池,在世界范围内得到广泛使用。考虑到其经济效益低,回收旧锂离子电池的重要性已降低。这就需要找到替代方法来回收和再利用废旧电池的石墨棒。因此,本研究报告了通过高温煅烧将废蛋壳转化为氧化钙,并从废旧电池中提取纳米石墨以应用于储能领域。使用 XRD、SEM、TEM 和 XPS 技术对 CaO 和 CaO/石墨的结构、形态和化学成分进行了表征。对制备的 CaO/石墨纳米复合材料在电化学超级电容器应用中的效率进行了评估。与单独的 CaO 相比,从废旧锂离子电池中获得的 CaO 及其与石墨粉的复合材料在储能应用中表现出更好的性能。将这些废料用于电化学储能和转换设备可实现更便宜、更环保和可持续的工艺。这种方法不仅有助于储能,而且还通过减少垃圾填埋场来促进废物管理的可持续性。
摘要添加剂制造业(AM)的最新进展引起了重大的工业兴趣。最初,AM主要与制造原型相关联,但是AM的进步与可用材料的扩展范围(尤其是用于生产金属零件)扩大的范围已经扩大了应用区域,现在该技术也可以用于制造功能零件。尤其是,AM技术可以用传统的制造工艺创建复杂和拓扑优化的几何形状。然而,在大多数情况下,使用独立的AM技术,无法实现紧密的几何公差以及航空航天,生物医学和汽车行业的严格表面完整性要求。因此,AM零件需要大量的后处理,以确保满足其表面和尺寸要求以及它们各自的机械性能。在这种情况下,不足为奇的是,AM与后处理技术的整合到单个和多设置的处理解决方案中,通常称为Hybrid AM,已成为行业非常有吸引力的命题,同时吸引了重大的R&D兴趣。本文回顾了与混合AM解决方案相关的当前研究和技术进步。特别的重点是将基于激光AM的功能加工粉末功能的混合AM解决方案与必要的后制处技术,用于生产具有必要准确性,表面完整性和材料特性的金属零件。将基于激光AM与后处理技术集成的市售混合动力AM系统以及其关键应用领域还进行了审查。最后,讨论了扩大混合AM解决方案的工业使用方面的主要挑战和开放问题。
粉末,散装,薄膜粉末的附件,薄膜X射线源3KW / 9kW0d・1d ・1d ・ 2D检测器反射 /变速箱Johanssonkα1单位(选项)
本章介绍了在主要添加剂技术之一中使用金属粉末的基本方面 - 直接激光沉积(DLD)。直接激光沉积是指一组直接能量沉积(DED)方法,类似于激光金属沉积(LMD)技术。对DLD使用的金属粉末应用的主要要求进行了分析和证实。证明了粉末的基本特性对沉积样品质量的影响。提出了粉末质量控制的一个例子,允许其在DLD技术中应用。提出了有关获得最常用金属材料的质量控制样品的实验研究结果。显示了基于铁,镍和钛的主要合金组的结构和培养研究结果。已经证明了使用DLD为各个行业领域生产产品的潜力。
图1 NiTi粉末的SEM/EDS表征:(a)粉末形貌,(b)粉末横截面和EDS取样点位置,(c)Ni元素分布,(d)Ti元素分布和(e)四个点的EDS峰值
客户重视Delamag Mgo粉末的性能,突出了粉末一致性,活动和物理特性所产生的稳定基础。这种一致性使牙科技术人员可以减少配方中的可变性,从而更容易首次获得正确的混合,吨后!