摘要。建筑业是全球CO 2排放的主要贡献者,特别是通过波特兰水泥生产。在印度尼西亚,现成混凝土中的粉煤灰利用提出了一种有希望的可持续建筑方法。该策略通过潜在减少排放和支持全球气候变化的缓解工作来使基础设施的发展与环境目标保持一致。这项研究调查了将粉煤灰纳入日益卡尔塔 - 巴尼(Yogakarta-Bawen)收费公路项目的现成混凝土的环境影响,并特别侧重于减少CO 2排放。认识到可持续建筑实践在解决气候变化中的关键作用,该研究旨在量化在FC 30 MPA Ready-Mix混凝土中用粉煤灰代替40%的波特兰水泥的环境收益。全面的分析表明,尽管良好的骨料有边缘增加,但与粗骨料相关的排放量下降了18%,水泥的排放量降低了55%。总体而言,该方法的总CO 2排放量显着降低了47%,这证明了粉煤灰在增强建筑材料的可持续性方面的有效性。这种实质性的减少强调了粉煤灰整合的潜力,这是减轻大规模基础设施项目的环境影响的关键策略。关键字:CO 2,发射,粉煤灰,现成混凝土,还原
摘要:作为热化学能存储领域研究的一部分,本研究旨在调查奥地利三家不同纸浆和造纸厂的流化床反应器产生的三种粉煤灰样品作为热化学能 (TCES) 和 CO 2 存储材料的潜力。 通过不同的物理和化学分析技术分析了选定的样品,例如 X 射线荧光光谱 (XRF)、X 射线衍射 (XRD)、粒度分布 (PSD)、扫描电子显微镜 (SEM)、电感耦合等离子体原子发射光谱 (ICP-OES) 和不同气氛 (N 2 、CO 2 和 H 2 O/CO 2 ) 下的同步热分析 (STA)。 为了评估环境影响,还进行了浸出试验。 通过 XRF 分析验证了 CaO 作为 TCES 的有希望的候选者的含量,其范围为 25–63% (w/w)。 XRD 结果表明,所有粉煤灰样品中的 CaO 均以游离石灰(3-32%)、方解石(21-29%)和硅酸盐的形式存在。STA 结果表明,所有粉煤灰样品均能满足 TCES 的要求(即充电和放电)。所有样品都进行了三次循环稳定性测试,结果表明在前三个反应循环中转化率有所降低。根据 STA 结果,所检查样品的能量含量高达 504 kJ/kg。在 CO 2 /H 2 O 气氛中,由于这些样品中已经存在游离石灰(CaO),因此在第一次放电步骤中,两种粉煤灰样品可以释放更多的能量(~1090 kJ/kg)。基于直接法和干法,这些粉煤灰样品的 CO 2 储存容量在每吨粉煤灰 18 至 110 kg 之间。浸出试验表明,所有重金属均低于奥地利垃圾填埋条例的限值。可以说,通过 TCES 和 CO 2 封存来增值纸浆和造纸工业的粉煤灰是可行的。然而,仍需进行进一步的研究,例如循环稳定性改进、系统集成和生命周期评估 (LCA)。
1 马来西亚玻璃市大学(UniMAP)材料工程学院土木工程技术系,01000,邮政信箱 77,D/A Pejabat Pos Besar,Kangar,玻璃市,马来西亚 2 马来西亚玻璃市大学(UniMAP)工程技术学院土木工程技术系,Sungai Chuchuh,02100 Padang Besar,玻璃市,马来西亚 3 普利茅斯大学工程学院,普利茅斯,PL4 8AA,英国 电子邮件:* zarinayahya@unimap.edu.my 摘要。混凝土广泛用于海上建筑,例如混凝土浮桥和海水箱。这项研究提供了一种替代普通波特兰水泥 (OPC) 混凝土的替代建筑材料,即土聚合物。土聚合物混凝土是通过将粉煤灰与碱性活化剂和 3% 的钢纤维混合而生产的,以提高纤维增强土聚合物混凝土 (FRGPC) 的性能。研究了老化期对 FRGPC 在海水中的强度、重量变化和碳化的影响,并与纤维增强混凝土 (FROPC) 进行了比较。FRGPC 获得的抗压强度高于 FROPC。FRGPC 获得的最高抗压强度为 28 天时的 76.87 MPa,FROPC 混凝土的最高抗压强度为 28 天时的 45.63 MPa。随着混凝土在海水中浸泡时间的增加,抗压强度降低。在两个样品在海水中浸泡长达 120 天的过程中,即使存在钢纤维,也没有检测到碳化。
Shekhovtsova JA、Kovtun MN 和 Kearsley EP。2016 年。通过耐久性指数、加速钢筋腐蚀和碳化试验对碱激活粉煤灰和 OPC 粉煤灰混合混凝土进行比较研究。FIB 2016 年研讨会论文集 - 基于性能的混凝土结构方法。FIB - 国际混凝土联合会/国际结构混凝土联合会。
也可以用于扩展可再生能源动力系统(例如浓缩太阳能(CSP))的运行时间。对于工业部门来说,所需的热量的43%大于400°C [1],而估计,随着120°C和1,700°C之间的废热,工业能源输入的20%至50%之间会丢失,仅美国的440个TWH在美国[2]。CSP的好处是相似的,研究表明,安装12个小时的全存储容量可以降低水平的能源成本(LCOE)10%[3]。尽管这种技术的经济和环境益处很多,但对于这些应用,TES的吸收很慢。这样做的原因是市售系统的一般高成本[4]和传统的两坦克熔融盐系统的巨大环境影响[4-5]。尽管在所有CSP植物的三分之一中被采用[6],但当前的最新两坦克熔融盐仍具有前进的几个重要局限性。这些限制包括系统的高成本[7,8],高冰点(220°C),需要昂贵的管道和储罐的冻结保护,最高工作温度为565°C。因此,为了使高温TE被更广泛地采用,必须确定一种存储材料,在经济上可行,丰富且易于使用,环保,稳定,在理想的工作温度(300-900°C)(300-900°C),并具有理想的物理和热物理特性(高热量能力,材料兼容,材料的兼容性等)粉煤灰被用作替代普通波特兰水泥(OPC),以降低混凝土的成本和环境影响。工业副产品的价值[9]或大量材料的使用是解决此问题的合适方法,因为这些材料既具有成本效益又具有较低的环境影响。为此提出了几种选择,例如处理过的石棉废物(Cofalit©)[10],基于粉煤灰的产品[11],电弧炉(EAF)炉渣[12]和沙漠砂[13]。这些材料的一种替代方法是使用使用工业废物(例如粉煤灰和黑色炉渣)制造的地球聚合物。除此之外,基于粉煤灰的混凝土可以量身定制,以表现出更高的抗压强度,对攻击性环境的耐药性,可工作性提高或对高温的抵抗力比传统混凝土具有更大的抵抗力[14]。在2013年,美国的粉煤灰产量估计为4840万吨,预测2033年将增加到4950万吨[15]。同时,2013年的粉煤灰利用率为44%,预计2033年将上升到65%[15]。即使达到了这个目标,此时将被填满超过4.5亿吨的粉煤灰。随着垃圾填埋场越来越稀疏,粉煤灰的再利用成为重要因素。到此为止,已经使用回收材料制造了一种新型的地质聚合物,以用作潜在的高温明智的存储选择。所提出的地理聚合物的实施是用于填充床的热级存储设计。这种设计显示出良好的可靠性和较低的成本,并与摩洛哥的CSP工厂一起运行了商业包装的系统[16]。在当前研究中,已经进行了新型地球聚合物的物理,嗜热和结构表征。此外,通过考虑材料的兼容性和耐用性以及公用事业量表电位系统的成本来研究该材料在高温TES中的适用性。然后将这些结果与其他研究的材料进行比较。
在燃煤发电厂,治理通常侧重于处理燃煤残留物,即煤灰。科尔斯特里普电厂在锅炉中燃烧煤炭,锅炉管道中的水会产生蒸汽。蒸汽推动涡轮机旋转,从而发电。燃煤产生的废气和烟气被导向洗涤器。烟气洗涤器是电厂的主要污染控制设备,可捕获产生的二氧化硫、颗粒物和其他潜在污染物。燃煤后会留下两种残留物:底灰和粉煤灰。粉煤灰的密度低于底灰,会随烟气通过洗涤器排出。洗涤器去除颗粒物,形成洗涤器泥浆。底灰和粉煤灰被放置在设施周围的池塘中,科尔斯特里普电厂就使用了九个煤灰池。池塘中令人担忧的污染物是硼、硫酸盐、钼、锰、锂、硒和钴。
EFW 工艺可将住宅垃圾的体积减少约 85% 至 90%。处理后剩下的垃圾中,大部分是无害的底灰,类似于碎石。较小部分是现场处理产生的粉煤灰,其中含有石灰和碳残留物,这些残留物被空气污染控制设备捕获。DYEC 的灰烬在运出场外之前会经过测试,以确保无害。底灰和处理过的粉煤灰被运往垃圾填埋场并用作日常覆盖材料,从而减少了对土壤或其他覆盖材料的需求。
摘要 由于其更好的强度重量比、可模塑性、抗断裂性以及能够使用当地材料,钢丝网水泥正成为一种越来越受欢迎的建筑材料。土聚物技术提供了一种环保的替代品,该技术使用碱性溶液来激活富含二氧化硅和氧化铝的材料。本研究重点研究土聚物基钢丝网水泥板,探索其弯曲性能并用土聚物砂浆替代水泥以提高性能。本研究调查了不同百分比的粉煤灰(范围从 0% 到 20%)、GGBS(范围从 80% 到 100%)和 2% 的纳米二氧化硅对钢丝网水泥土聚物混凝土性能的影响。使用碳纤维增强聚合物 (CFRP) 缠绕金属丝网测试弯曲行为。粉煤灰是煤电厂的副产品,与 GGBS 结合以提高强度和凝固性。采用 1:2 砂浆比,包含硅酸钠、氢氧化钠、GGBS 和粉煤灰。添加 80% GGBS 可获得最佳效果,尽管粉煤灰中 100% GGBS 的强度更高。纳米二氧化硅进一步提高了性能,1.5% 纳米二氧化硅和 80% GGBS 的强度显著提高 240%。研究最后确定了适合实际应用的优越组合,考虑到样品的渗透性、耐酸性和耐热性。