尽管人们充分认识到 3 d 过渡金属氧化物 (TMO) 准粒子性质的 GW 计算难度,但涉及 4 d 电子的 TMO 可能被视为边界系统,且受到的关注较少。这里我们展示了 SrZrO 3 和 BaZrO 3 的准粒子能带结构,这两种相对简单的宽带隙氧化物,尽管具有技术重要性,但对其电子结构的精确计算却很少。我们表明,完全收敛的 GW 计算可以准确预测 4 d TMO 钙钛矿 SrZrO 3 和 BaZrO 3 的准粒子性质,无论起始平均场解是在直接密度泛函理论 (DFT) 中计算还是在 DFT+ U 方法中计算。这与 3 d TMO 钙钛矿 SrTiO 3 和 BaTiO 3 的情况形成了鲜明对比,对于这两者,DFT+ U 方法被证明可以为后续的 GW 计算提供更好的起点。与相当局域化的 3 d 态相比,更扩展的 4 d 轨道似乎可以在 DFT 中使用局域或半局域泛函进行很好的描述。我们的结果再次证明了 GW 方法的准确性和稳健性,前提是可以获得可靠的零阶平均场解,并且结果足够收敛。
通过 QASM 语言,这是 IBM Q Experience 团队发明的一种用于创建量子电路的语言。另一方面,第二种方法是编写 Python 代码并使用名为 QISKit [32] 的 Python 软件开发工具包 (SDK) 运行它们,它适用于所有类型的算法。因此,我们在本文中展示的工作是使用 QISKit 进行的。可通过云端公开访问的量子设备分别由 IBM Q 5 Yorktown (ibmqx2) 、IBM Q Burlington 、IBM Q 5 London 、IBM Q Essex 、IBM Q Vigo 和 IBM Q Ourense(六个 5 量子比特设备)以及 IBM Q 16 Melbourne 和 IBM Q Armonk(16 量子比特和 1 量子比特设备)表示。用于模拟的经典后端称为 IBMQ QASM 模拟器。所有后端都与一组由单量子比特旋转和相移门组成的量子门一起工作。所有其他单量子比特门(如 X、S、R z 等)一般都是由这三个门的序列构成的,它们与 CNOT 一起构成量子门的通用集。除了量子比特的数量之外,所提到的量子设备在量子比特连接或拓扑方面也有所不同,IBM Q Experience 将其称为设备的耦合图 [33]。在本文中,我们修改并在 IBM 量子计算机上实现了参考文献 [34] 中研究的量子算法,使用相位估计技术找到有限方阱势一维薛定谔方程的基态和第一激发态的能量特征值。我们使用试验波函数作为初始状态,并在位置和动量空间中将其离散化。我们还在希尔伯特空间中构建了时间演化矩阵,其中定义了计算基向量(即量子比特态)。然后,我们将时间演化电路应用于最初准备的寄存器,并使用相位估计方法获得包含能量的相位。我们表明,所提出的算法可以以合理的误差实现预期结果。除了众所周知的量子相位估计方案外,我们还讨论了迭代相位估计方法的实现,以减少电路尺寸和量子比特数,从而有效利用 IBM 量子计算资源。最重要的是,为了充分利用 5 量子比特 IBM 后端,我们通过选择迭代相位估计技术将电路尺寸从文献 [34] 中使用的 8 个量子比特缩短到 5 个。本文组织如下。第 3 节描述了基于相位估计方法的量子算法的步骤。要执行数字量子模拟,我们需要设计时间演化算子来找到系统的能量特征值。此外,坐标应该离散化,初始波函数在网格点上近似。我们还解释了本文使用的两种相位估计算法。在第 4 部分中,我们解释了如何为时间演化算符中的动能和势能项构造量子门。第 5 节给出了结果和讨论,第 6 节讨论了最后的评论。