摘要:在技术渗透到我们生活的各个方面的时代,保护重要的基础设施免受网络威胁至关重要。本文探讨了机器学习和网络安全如何相互作用,并详细概述了这种动态协同作用如何增强关键系统和服务的防御。网络攻击对包括电网,运输网络和医疗保健系统在内的重要基础设施的公共安全和国家安全的危害非常重要。传统的安全方法未能跟上日益复杂的网络威胁。机器学习提供了改变游戏规则的答案,因为它可以实时分析大数据集并发现异常情况。这项研究的目的是通过应用机器学习算法(例如CNN,LSTM和深层增强算法)来增强关键基础架构的防御能力。这些算法可以通过使用历史数据并不断适应新威胁来预测弱点并减少可能的破坏。该研究还关注数据隐私,算法透明度和将机器学习应用于网络安全时出现的对抗性威胁的问题。要成功部署机器学习技术,必须消除这些障碍。保护重要的基础设施至关重要,因为我们每天都在连通性无处不在。这项研究提供了一个路线图,用于利用机器学习来维护我们当代社会的基础,并确保面对改变网络威胁,我们的重要基础设施是强大的。更安全,更安全的未来的秘诀是尖端技术与网络安全知识的结合。
量子假设检验的最终目标是在所有可能的经典策略中实现量子优势。在量子读取方案中,这是从光学内存中获取信息的,其通用单元在两个可能的有损通道中存储了一些信息。我们在理论上和实验上表明,通过实用的光子计数测量结果与模拟最大样本决策相结合,可以获得量子优势。特别是,我们表明该接收器与纠缠的两种模式挤压真空源相结合,能够以相同的平均输入光子数量相干状态的统计混合物胜过任何策略。我们的实验发现表明,量子和简单的光学器件能够增强数字数据的读数,为量子读数的真实应用铺平了道路,并使用基于波斯克尼克损失的二元歧视的任何其他模型进行了潜在应用。
摘要:微生物色素通常比其他天然色素优选,因为它们易于扩展,快速的颜料提取方法和简单的培养过程。因此,本文的目的是使用适当的微生物和分析标准程序隔离和鉴定从尼日利亚拉各斯州阿利莫索地方政府地区农场土壤中产生棒状细菌的黄色色素。鉴定分离株显示出革兰氏阳性黄色色素产生棒状细菌为iodinum。使用0.4 OD(600nm)的5%接种物(600nm),在pH7(120rpm)下,在pH7(35°C)的营养肉汤中实现了碘芽孢杆菌生产的最佳条件。在这些最佳条件下,生物质的1.2g/l总共产生了0.225g/l的粗色色素。黄色颜料在455nm时显示出最大的吸收。对粗色色素的GC-MS分析揭示了主要化合物,例如甲氧胺。顺式-10-甲基酸,甲基酯;乙酸,2- [BIS(甲基硫硫代)甲基] -1-苯基氢氮杂和4-甲基-2-三甲基甲硅烷基 - 乙烯酮
摘要。可变形图像配准是医学图像分析中的关键步骤,用于找到一对固定图像和运动图像之间的非线性空间变换。基于卷积神经网络 (CNN) 的深度配准方法已被广泛使用,因为它们可以快速、端到端地执行图像配准。然而,这些方法通常对具有较大变形的图像对性能有限。最近,迭代深度配准方法已被用来缓解这一限制,其中变换以由粗到细的方式迭代学习。然而,迭代方法不可避免地延长了配准运行时间,并且倾向于在每次迭代中学习单独的图像特征,这阻碍了利用这些特征来促进以后的迭代配准。在本研究中,我们提出了一种用于可变形图像配准的非迭代由粗到细配准网络 (NICE-Net)。在 NICE-Net 中,我们提出了:(i) 单次深度累积学习 (SDCL) 解码器,可以在网络的单次(迭代)中累积学习从粗到细的转换;(ii) 选择性传播特征学习 (SFL) 编码器,可以学习整个从粗到细配准过程的常见图像特征并根据需要选择性传播这些特征。在 3D 脑磁共振成像 (MRI) 的六个公共数据集上进行的大量实验表明,我们提出的 NICE-Net 可以胜过最先进的迭代深度配准方法,而只需要与非迭代方法类似的运行时间。
我们遵循 [9, 13] 中的符号。设 G 为图。对于 V(G) 的非平凡划分 (A,B),1如果路径 P 的一端在 A 中而另一端在 B 中,则我们称路径 P 为 A - B 路径。设 P 为图 G 中的一条路径。设 | P | 为 P 中的边数。如果 | P | 为偶数(分别为奇数),则我们称 P 为偶数(分别为奇数)。设 C 为按循环顺序具有顶点 v 0 ,v 1 ,...,vt − 1 的环。设 C i,j 表示 C 的子路径 vivi +1...vj,其中索引取自加法群 Z t 。设 H 为 G 的子图。如果顶点 v ∈ V ( G ) − V ( H ) 在 G 中与 V ( H ) 中的某个顶点相邻,则我们称 H 和顶点 v ∈ V ( G ) − V ( H ) 在 G 中相邻。设 NG ( H ) = S v ∈ V ( H ) NG ( v ) − V ( H ) 且 NG [ H ] = NG ( H ) ∪ V ( H )。对于 S ⊆ V ( G ),如果 V ( G ′ ) = ( V ( G ) − S ) ∪{ s } 且 E ( G ′ ) = E ( G − S ) ∪{ vs : v ∈ V ( G ) − S 与 G 中的 S 相邻 } ,我们称图 G ′ 是通过将 S 收缩为顶点 s 而从 G 得到的。如果 G − v 包含至少两个分支,则连通图 G 的顶点 v 是 G 的割顶点。 G 中的块 B 是 G 的最大连通子图,使得不存在 B 的割顶点。注意块是孤立顶点、边或2连通图。G 中的端块是 G 中最多包含一个 G 的割顶点的块。如果 G 是图并且 x, y 是 G 的两个不同顶点,我们称 ( G, x, y ) 为有根图。有根图 ( G, x, y ) 的最小度为 min { d G ( v ) : v ∈ V ( G ) −{ x, y }} 。如果 G + xy 是2连通的,我们还称有根图 ( G, x, y ) 是2连通的。我们称 k 条路径或 k 条循环 P 1 , P 2 , . . . , P k 为
造成量子非局域性和违反贝尔不等式的原因。3纠缠一直是量子信息技术和工艺发展的重要资源。4–13 利用纠缠进行量子信息处理依赖于操纵量子系统的能力,无论是在气相还是固相中。在我们之前的工作中,我们研究了纠缠以及在光学捕获的极性和/或顺磁性分子阵列中进行量子计算的前景,这些分子的斯塔克能级或塞曼能级作为量子比特。13,14 在这里,我们考虑被限制在光阱中的 87 个 Rb 原子的玻色-爱因斯坦凝聚态 (BEC) 15,并研究其自旋和动量自由度之间的纠缠。原子的超精细塞曼能级及其量化动量可以作为量子比特,甚至是更高维的量子比特,即具有 d 维的量子比特。我们注意到,在气态系统中实现玻色-爱因斯坦凝聚态,随后又演示了自旋轨道耦合的玻色-爱因斯坦凝聚态 16,为量子控制开辟了新途径。在反应动力学的背景下,自旋轨道耦合
得益于过去 20 年量子信息科学 (QIS) 的快速发展,潜在的 QIS 应用数量急剧增加,包括量子计算和量子信息处理、量子密码和量子传感。这些应用的物理平台种类也在稳步增加。大多数量子信息载体基于特定频率的电磁辐射,因此不同平台之间的直接接口极具挑战性,甚至不可能实现 [1,2]。这重新引起了人们对解决不同平台之间本地和远程互连问题的兴趣 [3,4]。高效的频率转换器能够改变量子态的频率而不会引起退相干,因此提供了一种理想的解决方案。已经提出并实现了几个这样的系统 [5,6],其中许多依赖于非线性光学材料,并且通常需要波导或腔体来实现足够的非线性 [7,8]。热原子或冷原子中的非线性过程是一种很有前途的替代方案,因为原子共振附近的非线性相互作用得到了强烈的增强。Rb 或 Cs 原子中的双梯形(或菱形)方案对于频率转换特别有吸引力 [9-11]。鉴于碱金属原子已成为
我们在实验上证明了一个多模干涉仪,其中包含一个被困在谐波电势中的39 K原子的玻色子凝结物,在该原子间相互作用中可以取消利用Feshbach的共振。kapitza-dirac从光学晶格中的衍射将BEC一致地分配在多个动量成分中,同样间隔,形成了不同的干涉路径,而轨迹被捕获的har-nonig势封闭。我们研究了两种不同的干涉方案,其中重组脉冲是在确定电位的全部或一半振荡后应用的。我们发现,干涉仪输出处动量成分的相对幅度通过诱导的谐波电位相对于光学晶格的诱导位移对外力敏感。我们展示了如何校准干涉仪,充分表征其输出并讨论透视改进。
可变形图像配准是医学图像分析的基本步骤。最近,Transformer 已用于配准,其表现优于卷积神经网络 (CNN)。Transformer 可以捕获图像特征之间的长距离依赖性,这已被证明对配准有益。然而,由于自注意力的计算/内存负载高,Transformer 通常用于下采样特征分辨率,无法捕获全图像分辨率下的细粒度长距离依赖性。这限制了可变形配准,因为它需要每个图像像素之间精确的密集对应关系。没有自注意力的多层感知器 (MLP) 在计算/内存使用方面效率高,从而可以捕获全分辨率下的细粒度长距离依赖性。然而,MLP 尚未在图像配准中得到广泛探索,并且缺乏对医学配准任务至关重要的归纳偏差的考虑。在本研究中,我们提出了第一个基于相关感知 MLP 的配准网络 (CorrMLP) 用于可变形医学图像配准。我们的 CorrMLP 在新颖的粗到细配准架构中引入了关联感知多窗口 MLP 块,该架构可捕获细粒度多范围依赖性以执行关联感知粗到细配准。对七个公共医疗数据集进行的大量实验表明,我们的 CorrMLP 优于最先进的可变形配准方法。
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。