摘要:本文主要讨论胶带剥离强度的测量。剥离强度是将两种粘合材料相互分离所需的平均力,适用于航空航天、汽车、粘合剂、包装、生物材料、微电子等各种行业。剥离试验数据用于确定粘合接头的质量,并在适用的情况下提供有关工艺效果的信息。剥离试验是拉伸方向的恒速试验。在材料试验中,剥离强度是通过测量和平均剥离样品的负载并将平均负载除以粘合剂的单位宽度后计算得出的。不同类型的材料使用不同的粘合剂进行粘合。可用于研究粘合强度的不同类型的剥离试验有 90º、135º、180º 和 T 型剥离试验。该机制主要侧重于 180º 剥离型试验。[1]本研究的重点是通过 180 度剥离强度测量机获得精确读数。在剥离强度测量机的这种机制中,低转速的电机将借助联轴器驱动动力螺杆。丝杠的旋转运动将转换为工作台的线性运动。支撑杆支撑安装在丝杠上的工作台,粘合强度将借助测量仪进行测试。180度剥离强度测量机可以以更高的精度测量应用于任何表面的胶带的粘合性。它不需要润滑,维护成本也很低。机器成本更低,工作速度更快。关键词:剥离强度、180度剥离试验、低转速电机、丝杠、测量仪。
需求是由于粘合材料不良,非平板粘合表面,奇数包装情况还是仅仅是由于对高可靠性的需求;通过正确使用辅助电线,通常可以大大提高线键互连的完整性。辅助电线定义为安全线,安全凸起或隔离针迹(又称凸起的针迹)。旧的待命安全线已经成为一项资产已有几十年了,但是,这被安全颠簸所取代,安全性需要较小的第二键终止区域。此外,僵持针迹(SOS)具有更多的应用程序,并且还具有许多侧面好处,可以将其纳入电路设计中,以获得更好的电线强度性能,更少的互连(死于死亡结合)和较低的环路。隔离针键键合涉及将球碰撞放置在电线互连的一端,然后将电线与另一个球放在互连的另一端,并在先前放置的球碰撞上缝线。这会导致几乎均匀的针键键互连到颠簸,并具有固有的针键键拉力强度的改善。SOS的另一种用途是反向键(在模具键垫上的颠簸上的针键键),通常会导致比标准前向线环的较低的环轮廓,并且环路更强,因为电线尚未在球上方退火(在热影响的区域)。实施SOS的主要障碍是视觉检查员的重新培训和质量部门的批准。
摘要 在欧洲航天局赫歇尔空间天文台 (HSO) 的开发框架下,IMEC 设计了用于 PACS 仪器的冷读出电子器件 (CRE)。该电路的主要规格是高线性度、低功耗、高均匀性和工作温度为 4.2K(液氦温度,LHT)时的极低噪声。为了确保高产量和均匀性、相对容易的技术可用性以及设计的可移植性,该电路采用标准 CMOS 技术实现。电路在室温下可正常工作,这允许在集成和鉴定之前进行筛选,并且对生产产量和时间有重要影响。该电路安装在 Al 2 O 3 基板上以获得最佳电气性能。在同一基板上,集成了偏置信号生成、短路保护电路和电源线的去耦电容器。这导致基板相对复杂,包含 30 多个无源元件和一个芯片,通过导电和非导电胶以及近 80 个引线键合进行集成。因为探测器阵列在发射前要冷却到 4.2K,所以必须证明安装的基板在这种温度和恶劣环境下的可靠性和发射生存力。为此,在基板安装期间要验证每个组装步骤的质量和相关可靠性。这包括验证粘合材料的兼容性、优化粘合产量以及设备的温度循环(室温和 LHT 之间)。对鉴定模型的其他测试将侧重于质子和伽马射线辐照下的电路功能、低温振动测试以证明发射生存力,以及详尽的温度循环以鉴定组装程序。本文中,我们介绍了所开发电路的完整集成和鉴定,包括飞行模型生产过程中的组装和验证以及在鉴定模型上组装方法的鉴定。关键词 低温、远红外、LHT、鉴定、读出电子电路、系统集成。一、简介 光电导体阵列照相机和光谱仪 (PACS) [1,2] 是赫歇尔空间天文台 (HSO,原名 FIRST) [3] 上的三台科学仪器之一,赫歇尔空间天文台是欧空局“地平线 2000”计划中的第四个基石任务 [4]。PACS 使用两个 Ge:Ga 光电导体阵列 (25 x 16 像素),同时对 60 至 210 µm 波段进行成像。光电探测器
摘要 在过去的 10-20 年里,集成电路 (IC) 的发展发生了重大转变,传统的光刻方法在更先进节点的开发时间急剧增加,而要实现与以前相同的性能提升,成本也成倍增加。成本的增加和光刻技术的进步导致人们开始研究先进的封装技术,通过改变 IC 设计方法来实现相同的性能提升。未来先进封装技术将以更低的成本提高性能,人们将 IC 视为一个相互交织工作的组件系统,而不是单个组件。这种思维转变导致了系统级封装 (SiP)、堆叠封装 (PoP) 和扇出型晶圆级封装 (FOWLP) 等技术的出现。在实现上述技术方面发挥关键作用的一项先进封装技术是临时键合和脱键合 (TB/DB)。 TB/DB 在先进封装中发挥的关键作用在于,通过使用支撑载体晶圆,可以实现晶圆减薄、晶圆凸块、芯片堆叠和化学气相沉积/物理气相沉积 (CVD/PVD) 型工艺等背面处理。支撑载体晶圆还可以减少整个晶圆堆叠的整体翘曲,从而允许使用易翘曲的材料,例如环氧模塑料 (EMC),这在 FOWLP 应用中至关重要。要使用支撑载体晶圆,需要一种坚固的材料解决方案,以便将晶圆粘合在一起,然后在背面处理后通过热滑动、机械或激光脱粘等主要分离方法之一将其释放。Brewer Science 设计并开发了一种双层临时粘合系统。该系统由两种材料组成,一种是通常涂在设备上的热塑性层,另一种是通常涂在载体上的热固性层。为双层系统开发的材料在极高温度应用、EMC 晶圆处理和设备减薄至 20 µm 以下方面表现出色。在本文中,我们将总结它们的功能,并介绍如何通过材料设计来调整两个临时层之间的粘合力。我们还将介绍热固性层的一个新功能,该功能可以进行图案化,从而允许将图案化粘合材料用于 TB/DB 型应用。关键词临时晶圆粘合、双层系统、光图案化、热塑性材料和热固性材料