摘要 乳牙的慢性感染,特别是那些涉及根尖周围病变的感染,对儿童牙髓病学构成了重大挑战。由于这些感染的根管系统复杂且具有多种微生物的特性,有效的抗菌治疗至关重要。三联抗生素糊剂 (TAP) 结合了甲硝唑、环丙沙星和米诺环素,在感染根管的消毒方面表现出良好的前景。然而,其对一系列口腔病原体的抗菌效果需要进一步研究。这项体外研究评估了 TAP 对五种口腔病原体的抗菌效果:粪肠球菌 (ATCC 35550)、变形链球菌 (ATCC 25175)、金黄色葡萄球菌 (ATCC 12598)、乳酸杆菌属 (ATCC 4356) 和白色念珠菌 (ATCC 10231)。 TAP 被制备成三种浓度(25 μg/mL、50 μg/mL 和 100 μg/mL),并使用琼脂孔扩散法进行测试。在 37°C 下孵育 24 小时后测量抑菌圈直径。研究发现,TAP 对所有测试的微生物都表现出显著的抗菌活性。在 100% 浓度的 TAP 下观察到最高的抑制区。粪肠球菌显示出最大的抑制区(44.40 ± 0.89 毫米),其次是金黄色葡萄球菌(48.87 ± 0.43 毫米)。虽然 50% 浓度的 TAP 也表现出显著的抗菌活性,但对于大多数生物体来说,50% 和 100% 浓度之间没有统计学上的显著差异。统计分析表明,两种浓度的 TAP 对粪肠球菌、变形链球菌、金黄色葡萄球菌、白色念珠菌和乳酸杆菌均有效。三重抗生素糊剂对主要口腔病原体(包括粪肠球菌和金黄色葡萄球菌等生物膜形成细菌)表现出强大的抗菌效果。虽然 100% 浓度显示出最显著的效果,但 50% 浓度也表现出显著的抗菌活性,这表明较低浓度在临床应用中同样有效。需要进一步的临床研究来证实 TAP 在治疗儿科患者慢性牙髓感染方面的潜力。
背景:粪肠球菌 (E. faecalis) 是伊拉克和全世界泌尿道感染 (UTI) 的病原体,尽管它是人类和动物肠道中的共生菌。由于它能够产生各种致病因子,因此可导致不同的疾病。成孔毒素 (溶细胞素) 是这种细菌中毒性最强的因子。目的:本研究旨在从分子水平上研究从 UTI 中分离出的粪肠球菌中溶细胞素毒素的频率。方法:从被诊断患有 UTI 的女性身上采集了 180 份尿液样本。使用传统的实验室和分子方法进行细菌鉴定,并使用改进的 DNA 提取方法进行毒素检测。结果:利用聚合酶链式反应(PCR)技术针对管家基因(ddI)进行特异性引物分析,结果显示27.7%(50\180)的UTI病原体为粪肠球菌。大多数分离株含有溶细胞毒素基因(cylL L ),频率为92%(46\50)。结论:UTI中溶细胞毒素阳性分离株的患病率很高,令人担忧,这表明UTI中毒性菌株的广泛传播。改进的基因检测DNA提取方法成功扩增了管家基因(ddI)和毒力基因(cylL L ),可用于溶细胞毒素检测,该方法可用于医疗和研究目的的快速细菌鉴定和基因检测,样本量大,时间短,成本低。
在小鼠中,肠道簇细胞被描述为一种长期寿命的有丝分裂后细胞类型,其中30个已经鉴定出了两个不同的子集,称为Tuft-1和Tuft-2 1。通过结合对31次人类肠道切除材料和肠道器官的分析,我们确定了四个不同的32个人簇细胞状态,其中两个与它们的鼠重叠。我们表明,簇簇33细胞的发育取决于Wnt配体的存在,簇状细胞数在白介素(IL)-4和IL-13暴露后迅速增加34,如小鼠2-4中报道。这35个是通过预先存在的簇细胞的扩散而来发生的,而不是通过从干细胞中增加的36产生来发生。的确,在胎儿和成人37人类肠道中,增殖性簇细胞在体内都存在。单个成熟的增殖簇细胞可以形成含有所有38种肠上皮细胞类型的器官。与干细胞和祖细胞不同,人簇细胞生存39辐射损伤,并保留产生所有其他上皮细胞类型的能力。因此,缺乏簇簇细胞的40种手机无法从辐射诱导的损伤中恢复。因此,41个簇细胞代表了人类损伤诱导的储备肠干细胞库。42
目的:牙根管的复杂结构有助于细菌在标准根管治疗难以触及的隐蔽区域定植和形成生物膜。本综述旨在总结体外和离体研究的数据,以更好地了解冷常压等离子体 (CAP) 在牙根管消毒中的应用。方法:筛选 PubMed、Scopus 和 Web of Science 数据库。提取纳入研究的特征,并对离体研究进行荟萃分析,以评估 CAP 对粪肠球菌 (E. faecalis) 菌落形成单位测定的影响。该研究遵循 PRISMA 2020 指南进行。结果:共有 31 项研究符合选择标准。只有 2 项研究报告了间接等离子体治疗,28 项试验使用直接 CAP 给药,而 1 项研究同时采用了这两种方法。大多数研究都是针对粪肠球菌进行的,使用氦气或氩气作为载气,或与氧气和空气结合使用。研究发现,不同研究对不同来源、设置和应用方案的处理存在相当大的异质性。尽管如此,CAP 仍显示出减少粪肠球菌菌落形成单位的有效性,标准化平均差异为 4.51,95% CI = 2.55 – 6.48,p 值 < 0.001。结论:数据表明直接使用 CAP 对微生物具有抗菌作用。体外研究表明,效果取决于治疗的时间和距离,而对体外研究进行的荟萃分析表明,CAP 的效果与时间和距离无关。
匹兹堡大学物理与天文学系,宾夕法尼亚州匹兹堡 15260 * 通讯作者,电子邮件:pth9@pitt.edu 摘要 量子信息科学是一个快速发展的跨学科领域,吸引了学术界和行业专家的广泛关注。它需要来自各种传统领域的人才,包括物理学、工程学、化学和计算机科学等。为了让学生为这样的机会做好准备,重要的是让他们打下坚实的量子信息科学基础,量子计算在其中起着核心作用。在本研究中,我们讨论了布洛赫球面教程的开发、验证和评估,布洛赫球面是一种有用的可视化工具,可用于培养对单个量子比特(量子位)的直觉,而单个量子比特是任何量子计算机的基本组成部分。在学生接受有关必修主题的传统讲座式指导后,以及在参与教程后,我们对他们的理解进行了评估。我们观察、分析并讨论他们在教程中涵盖的概念上的表现进步。简介 量子信息科学与工程 (QISE) 是一个令人兴奋的跨学科领域,可在量子计算、量子通信和网络以及量子传感中应用,这些应用因多种原因而吸引着科学家和工程师。计算机科学家和工程师正在开发用于解决各种问题的量子算法,包括传统计算机无法大规模解决的问题。例如,在传统计算机上,对大素数乘积进行因式分解的问题会随着素数的大小呈指数增长,但在使用 Shor 算法的量子计算机上,该问题的大小大致为多项式。对于未来科学应用,物理学家和化学家也对量子计算机解决其学科中重要问题的潜力感到兴奋,其中求解薛定谔方程起着重要作用。开发强大的量子比特 (qubit) 和可扩展的量子计算机需要物理学家和工程师的专业知识。由于所有这些原因以及其他原因,这一研究领域对于许多来自科学和工程学科、对 QISE 相关领域感兴趣的学生来说,具有巨大的发展前景 [1,2]。用于介绍量子态及其可视化的教学工具之一是 Bloch 球,它允许可视化量子比特(量子计算机的基本功能单元)的状态。它可以成为理解双态系统特性的重要而有力的辅助手段,但学生往往难以理解。此外,Bloch 球是当前研究(包括量子传感和断层扫描)中非常有用的工具,该领域的实验者经常使用它来表征工作中的单个量子比特。布洛赫球面可以让人们以图形方式了解单量子比特状态,包括通过密度矩阵的混合状态,以及可以通过单量子比特门完成的操作。
