诱导 GFP 表达。C、D. 成年年轻果蝇睾丸中的 DNA(Hoechst)和 4Mbox-GFP(Mitf 活性报告基因)的代表性图像。D 中勾勒出了 C 中精原细胞和精母细胞的放大区域。C 中勾勒出了囊细胞核。DE 中的虚线标出了有丝分裂到减数分裂的转变。对成年年轻雄性有丝分裂精原细胞(n = 10 个睾丸中的 50 个精原细胞)和减数分裂精母细胞(n = 10 个睾丸中的 50 个精母细胞)中 4MBox-GFP 强度的量化。平均值 ± SD p < 0.0001,Mann-Whitney U 检验。 F. 量化年轻男性(n =60 个精母细胞,来自 12 个睾丸)和老年男性(n =80 个精母细胞,来自 16 个睾丸)精母细胞中 4Mbox-GFP 强度。平均值 ± SD p < 0.0001,Welch t 检验。G. 年轻和老年男性精母细胞中 DNA(Hoechst)和 4Mbox-GFP(Mitf 活性报告基因)的代表性图像。H. 量化年轻男性(n =60 个精母细胞,来自 12 个睾丸)和老年男性(n =65 个精母细胞,来自 13 个睾丸)精母细胞中 VhaSFD-GFP 强度。平均值 ± SD p < 0.0001,Welch t 检验。I. 年轻和老年男性精母细胞中 DNA(Hoechst)和 VhaSFD-GFP 的代表性图像。条,20 µm。
雄激素在斑马鱼雄性生殖发育和功能中的作用尚不清楚。为了研究这个主题,我们使用 CRISPR/Cas9 生成 cyp11c1(11 β-羟化酶)突变斑马鱼品系。我们的研究证实了最近发表的关于另一种 cyp11c1 − / − 突变斑马鱼品系的发现,并报告了 Cyp11c1 功能丧失导致的表型的新方面。我们报告称,Cyp11c1 缺陷斑马鱼主要表现出雌性第二性征,但可能拥有卵巢或睾丸。此外,我们观察到 cyp11c1 − / − 突变雄性斑马鱼严重缺乏雄激素和皮质醇。这些结果进一步证明,雄激素对于斑马鱼睾丸的形成是可有可无的,正如之前在雄激素缺乏和雄激素抗性的斑马鱼中证实的那样。在此,我们显示 cyp11c1 − / − 突变斑马鱼的睾丸表现出混乱的管状结构;并且首次证明连接睾丸和泌尿生殖口的精索管在雄激素缺乏的斑马鱼中严重发育不全。此外,我们还显示 cyp11c1 − / − 突变斑马鱼的精子发生和特征性繁殖行为受损。在 Cyp11c1 缺陷的斑马鱼的睾丸中,A 型精原细胞标记物 nanos2 的表达显著增加,而精子发生后期阶段的标记物的表达显著降低。这些观察结果表明在斑马鱼中,A 型精原细胞的产生不依赖于雄激素,但 A 型精原细胞的分化是一个依赖雄激素的过程。总体而言,我们的结果表明,虽然雄激素不是睾丸形成所必需的,但它们在决定第二性征、曲细精管的正确组织和男性生殖细胞的分化方面发挥着重要作用。
推迟生育计划和父母年龄增加会增加不孕不育和后代健康受损的风险。虽然衰老对卵子发生的影响已被充分研究,但对精子发生的影响却了解甚少。评估衰老对男性生殖细胞的影响对于区分衰老相关疾病、不孕不育和“纯”衰老的影响提出了挑战。然而,要了解衰老对男性生殖细胞的影响,需要将年龄与其他因素区分开来。因此,在这篇综述中,我们讨论了目前关于健康衰老和精子发生的知识。男性衰老以前与精子参数下降、激素分泌紊乱和怀孕时间延长等有关。然而,最近的数据显示,健康衰老不会损害睾丸在激素产生和精子生成方面的功能。此外,衰老生殖细胞中会发生内在的、与年龄相关的、高度特异性的过程,这与躯体衰老明显不同。精原干细胞群的变化表明干细胞衰竭得到了补偿。在衰老的育龄男性中,可以观察到干细胞生态位的改变和精子中的分子衰老特征。DNA碎片率以及DNA甲基化模式的变化和端粒长度的增加是精子衰老的标志。综上所述,我们提出了静止的A暗精原细胞的重新激活与这些激活的精原细胞产生的衰老精子的分子变化之间的假定联系。我们建议对男性生殖细胞的“纯”年龄效应进行基线研究,可用于后续研究不育或合并症的影响。生殖 (2021) 161 R89–R101
肿瘤抑制因子p53是一种转录因子,参与多种重要的细胞功能,包括细胞周期停滞、DNA修复和细胞凋亡。然而,越来越多的研究表明p53在精子发生以及男性不育的发生和发展中起着多重作用。p53在精子发生过程中的代表性功能包括精原干细胞(SSC)的增殖、精原细胞分化、自发性凋亡和DNA损伤修复。p53参与多种男性不育相关疾病。近年来,针对p53的创新治疗策略不断涌现。本文重点介绍p53在精子发生和男性不育中的作用,并分析其可能的潜在机制。这些结论可能为以p53为靶点的药物干预治疗男性不育提供新的视角。
CRISPR/Cas 系统,特别是 CRISPR/Cas9(Jinek 等人,2012;Cong 等人,2013),已被开发为一个强大而多功能的平台,用于操作各种物种的基因组。近年来,许多报告表明其在人类基因治疗和生命科学研究以及动植物育种方面具有强大的潜在应用。本研究主题“精准基因组编辑技术和应用”中的集合可能就是明证。通常,CRISPR/Cas9 核酸酶用于切割目标基因组 DNA 以产生位点特异性双链断裂 (DSB),主要通过非同源末端连接 (NHEJ) 修复,或在较小程度上通过同源定向修复 (HDR) 修复。经典的 NHEJ 修复途径可产生小的插入或缺失 (indel),通过在开放阅读框 (ORF) 中引入移码导致目标编码基因的功能丧失。NHEJ 诱变是一种非常流行的基因操作策略。除了经典的 NHEJ 之外,替代或准确的 NHEJ 介导的修复可以实现精确的基因组 DNA 缺失(Guo et al., 2018; Shou et al., 2018)。Chao 等人和 Zhao 等人在本研究主题中的两篇论文分别描述了等位基因特异性敲除和双基因敲除小鼠模型的制造,用于快速疾病基因验证和人类异种移植研究。N6-甲基腺苷 (m6A) 是一种成熟的真核 mRNA 表观遗传修饰。越来越多的研究发现了 m6A 甲基化的意义,这催生了“表观转录组学”这一新兴领域。本卷中的另一篇文章( Huang 等人)描述了小鼠精原细胞 GC-1 细胞中脂肪质量和肥胖相关( Fto )基因的敲除研究,该基因已被证明作为 m6A 去甲基化酶作用于表观转录组( Li 等人,2017 年; Lin 等人,2017 年)。另一方面,HDR 修复途径依赖于同源供体 DNA 在 DSB 位点产生靶向基因敲入或在两个 DSB 位点之间产生基因替换。精确的点突变和设计的小插入/缺失也可以通过这种方法实现。本专题中的一篇论文介绍了利用CRISPR/Cas9介导的HDR在人诱导性多能干细胞(iPSC)中精准校正Rett综合征(RTT)中甲基-CpG结合蛋白2(MECP2)基因的努力。该报道为基于iPSC的疾病建模和基因校正治疗提供了参考(Le等)。虽然基于HDR的基因组可以实现基因插入和精准替换,但在精准编辑过程中仍面临一些缺点,包括HDR效率低、双等位基因靶向失败、正向选择的复杂性以及选择标记的重新删除。